Biomedical Engineering Reference
In-Depth Information
properties of silicon nitride ceramics. J. Am. Ceram. Soc., 2005, 88(5): 1323-
1326.
57. Blugan, G., Hadad, Y.M., Janczak-Rusch, J., Kuebler, J., and Graulez, T.,
Fractography, mechanical properties, and microstructure of commercial silicon
nitride-titanium nitride composites. J. Am. Ceram. Soc., 2005, 88(4): 926-933.
58. Latapie, A. and Farkas, D., Molecular dynamics investigation of the fracture
behavior of nanocrystalline α -Fe. Phys. Rev. B, 2004, 69: 134110-8.
59. Wendel, J.A. and Goddard, W.A., The Hessian biased force field for silicon
nitride ceramics: Predictions of thermodynamic and mechanical properties for
α - and β -Si 3 N 4 . J. Chem. Phys., 1992, 97(7): 5048-5062.
60. Mota, F.d.B., Justo, J.F., and Fazzio, A., Hydrogen role on the properties of
amorphous silicon nitride. J. Appl. Phys., 1999, 86(4): 1843-1847.
61. Ching, W.-Y., Xu, Y.-N., Gale, J.D., and Ruehle, M., Ab-initio total energy
calculation of α - and β -silicon nitride and the derivation of effective pair
potentials with application to lattice dynamics. J. Am. Ceram. Soc., 1998, 81
(12): 3189-3196.
62. Fang, C.M., Wijs, G.A.d., Hintzen, H.T., and With, G.d., Phonon spectrum
and thermal properties of cubic Si 3 N 4 from first-principles calculations. J. Appl.
Phys., 2003, 93(9): 5175-5180.
63. Morkoc, H., Strite, S., Gao, G.B., Lin, M.E., Sverdlov, B., and Burns, M.,
Large-band-gap SIC, Ill-V nitride, and II-VI ZnSe-based semiconductor device
technologies. J. Appl. Phys., 1994, 76(3): 1363-1398.
64. Tersoff, J., Empirical interatomic potential for silicon with improved elastic
properties. Phys. Rev. B, 1988, 38: 9902-9905.
65. Tersoff, J., Modeling solid-state chemistry: Interatomic potentials for
multicomponent systems. Phys. Rev. B (Rapid Comm.), 1989, 39(8): 5566-5568.
66. Tersoff, J., Carbon defects and defect reactions in silicon. Phys. Rev. Lett., 1990,
64: 1757-1760.
67. Huang, H., Ghoniem, N.M., Wong, J.K., and Baskes, M.I., Molecular
dynamics determination of defect energetics in β -SiC using three
representative empirical potentials. Model. Sim. Mater. Sci. Engg, 1995, 1995
(3): 615-627.
68. Noreyan, A., Amar, J.G., and Marinescu, I., Molecular dynamics simulations
of nanoindentation of β -SiC with diamond indentor. Mater. Sci. Engg B, 2005,
117: 235-240.
69. Ma, Y. and Garofalini, S.H., Application of the Wolf damped Coulomb
method to simulations of SiC. J. Chem. Phys., 2005, 122: 094508(1-5).
70. Marian, C.M., Gastreich, M., and Gale, J.D., Empirical two-body potential for
solid silicon nitride, boron nitride, and borosilazane modifications. Phys. Rev.
B, 2000, 62(5): 3117-3124.
71. Vincent, J. and Merz, K.M., A highly portable parallel implementation of
AMBER using the Message Massing Interface standard. J. Comp. Chem., 1995,
11: 1420-1427.
72. Jian, W., Kaiming, Z., and Xide, X., Pair potentials for C-C, Si-Si and Si-C
from inversion of the cohesive energy. J. Phys.: Cond. Matter, 1994, 6: 989-996.
73. Tomar, V., Atomistic modeling of the Al+Fe 2 O 3 material system using classical
molecular dynamics. In Mechanical Engineering, 2005: Georgia Institute of
Technology, Alanta. P. 295.
￿ ￿ ￿ ￿ ￿ ￿
Search WWH ::




Custom Search