Biomedical Engineering Reference
In-Depth Information
simulations: Atomistically induced stress distributions in Si/Si 3 N 4 nanopixels.
Phys. Rev. Lett., 2001, 87(8): 086104.
39. Tomar, V. and Zhou, M., Tension-compression strength asymmetry of
nanocrystalline α -Fe 2 O 3 +fcc-Al ceramic-metal composites. Appl. Phys. Lett.,
2006, 88: 233107 (1-3).
40. Tomar, V., Zhai, J., and Zhou, M., Bounds for element size in a variable
stiffness cohesive finite element model. Int. J. Num. Meth. Engg, 2004, 61: 1894-
1920.
41. Klopp, R.W. and Shockey, D.A., The strength behavior of granulated silicon
carbide at high strain rates and confining pressure. J. Appl. Phys., 1991, 70(12):
7318-7326.
42. Holmquist, T.J. and Johnson, G.R., Response of silicon carbide to high velocity
impact. J. Appl. Phys., 2002, 91(9): 5858-5866.
43. Walker, J., Analytically modeling hypervelocity penetration of thick ceramic
targets. Int. J. Impact Engg., 2003, 29(1-10): 747-755.
44. Loubens, A., Rivero, C., Boivin, P., Charlet, B., Fortunier, R., and Thomas, O.,
Investigation of local stress fields: Finite element modeling and high-resolution
X-ray diffraction. MRS Proc., 2005, 875: 0.83, doi: 10, 1577/PROC-875-08.3.
45. Minnaar, K., Experimental and numerical analysis of damage in laminate
composites under low velocity impact loading. 2002. PhD Thesis, Georgia
Institute of Technology, Atlanta, GA.
46. Tomar, V. and Zhou, M., Deterministic and stochastic analyses of dynamic
fracture in two-phase ceramic microstructures with random material properties.
Eng. Fract. Mech., 2005, 72: 1920-1941.
47. Zhai, J., Tomar, V., and Zhou, M., Micromechanical modeling of dynamic
fracture using the cohesive finite element method. J. Engg Mater. Tech., 2004,
126: 179-191.
48. Xu, X.P. and Needleman, A., Numerical simulations of fast crack growth in
brittle solids. J. Mech. Phys. Solids, 1994, 42: 1397-1434.
49. Sorensen, B.F. and Jacobsen, T.K., Determination of cohesive laws by the J
integral approach. Engg Frac. Mech., 2003, 70: 1841-1858.
50. Cornec, A., Scheider, I., and Schwalbe, K.-H., On the practical application of
the cohesive zone model. Engg Frac. Mech., 2003, 70: 1963-1987.
51. Espinosa, H.D., Dwivedi, S., and Lu, H.-C., Modeling impact induced
delamination of woven fiber reinforced composites with contact/cohesive
laws. Comp. Meth. Appl. Mech. Engg, 2000, 183: 259-290.
52. Niihara, K., Suganuma, K., Nakahira, A., and Izaki, K., Interfaces in Si 3 N 4 -
SiC nanocomposites. J. Mater. Sci. Lett., 1990, 9: 598-599.
53. Ajayan, P.M., Schadler, L.S., and Braun, P.V., Nanocomposite Science and
Technology, 2003: Wiley-VCH.
54. Schwetz, K.A., Kempf, T., Saldsleder, D., and Telle, R., Toughness and
hardness of LPS-SiC and LPS-SiC based composites. Ceram. Engg Sci. Proc.,
2004, 25(3): 579-588.
55. Messier, D.R. and Croft, W.J., Silicon Nitride, 1982: Army Research
Laboratory, AMMRC TR 82-42.
56. Liu, X.-J., Huang, Z.-Y., Pu, X.-P., Subn, X.-W., and Huang, L.-P., Influence
of planetary high-energy ball milling on microstructure and mechanical
￿ ￿ ￿ ￿ ￿ ￿
Search WWH ::




Custom Search