Biomedical Engineering Reference
In-Depth Information
fracture resistance of SiC-Si 3 N 4 intergranular nanocomposites. Eng. Fract.
Mech., 2008, 75: 4501-4512.
23. Bill, J., Kamphowe, T.W., Mueller, A., Wichmann, T., Zern, A., Jalowieki, A.,
Mayer, J., Weinmann, M., Schuhmacher, J., Mueller, K., Peng, J., Seifert, H.J.,
and Aldinger, F., Precursor-derived Si-(B-)C-N ceramics: thermolysis,
amorphus state, and crystallization. Appl. Organometal. Chem., 2001, 2001
(15): 777-793.
24. Jalowiecki, A., Bill, J., Aldinger, F., and Mayer, J., Interface characterization of
nanosized B-doped Si 3 N 4 /SiC ceramics. Composites Part A, 1996, 27A: 721.
25. Farkas, D., Willemann, M., and Hyde, B., Atomistic mechanisms of fatigue in
nanocrystalline metals. Phys. Rev. Lett., 2005, 94: 165502.
26. Yamakov, V., Wolf, D., Phillpot, S.R., and Gleiter, H., Deformation twinning
in nanocrystalline Al by moleculardynamics simulation. Acta Mater., 2002, 50:
5005-5020.
27. Liao, X.Z., Zhou, F., Lavernia, E.J., He, D.W., and Zhua, Y.T., Deformation
twins in nanocrystalline Al. Appl. Phys. Lett., 2003, 83(24): 5062-5064.
28. Abraham, F.F., How fast can cracks move? A research adventure in materials
failure using millions of atoms and big computers. Adv. Phys., 2003, 52(8): 727-
790.
29. Kadau, K., Germann, T.C., Lomdahl, P.S., and Holian, B.L., Microscopic view
of structural phase transitions induced by shock waves. Science, 2002, 296: 1681.
30. Dionald, W.A.R.D., Curtin, W.A., and Yue, Q., Mechanical behavior of
aluminium-silicon nanocomposites: A molecular dynamics study. Acta Mater.,
2006, 54(17): 4441-4451.
31. Song, M. and Chen, L., Molecular dynamics simulation of the fracture in
polymer-exfoliated layered silicate nanocomposites. Macromol. Theory Sim.,
2006, 15(3): 238-245.
32. Tomar, V. and Zhou, M., Analyses of tensile deformation of nanocrystalline α -
Fe2O3+fcc-Al composites using classical molecular dynamics. J. Mech. Phys.
Solids, 2007, 55: 1053-1085.
33. Zeng, Q.H., Yu, A.B., and Lu, G.Q., Molecular dynamics simulations of
organoclays and polymer nanocomposites. Int. J. Nanotechnol., 2008, 5(2-3):
277-290.
34. Zeng, Q.H., Yu, A.B., Lu, G.Q., and Standish, R.K., Molecular dynamics
simulation of organic-inorganic nanocomposites: Layering behavior and
interlayer structure of organoclays. Chem. Mater., 2003, 15: 4732-4738.
35. Tsuruta, K., Totsuji, H., and Totsuji, C., Neck formation processes of
nanocrystalline silicon carbide: A tight-binding molecular dynamics study.
Phil. Mag. Lett., 2001, 81(5): 357.
36. Tsuruta, K., Totsuji, H., and Totsuji, C., Parallel tight-binding molecular
dynamics for high-temperature neck formation processes of nanocrystalline
silicon carbide. Mater. Trans., 2001, 42(11): 2261.
37. Mirgorodsky, A.P., Baraton, M.I., and Quintard, P., Lattice dynamics and
prediction of pressure-induced incommensurate instability of a
￿ ￿ ￿ ￿ ￿ ￿
β
-Si 3 N 4 lattice
with a simple mechanical model. Phys. Rev. B, 1993, 48(18): 13326-13332.
38. Lidorikis, E., Bachlechner, M.E., Kalia, R.K., Nakano, A., Vashishta, P., and
Voyiadjis, G.Z., Coupling length scales for multiscale atomistic-continuum
Search WWH ::




Custom Search