Biomedical Engineering Reference
In-Depth Information
[6] S. Leeuwenburgh, P. Layrolle, F. Barrére, J. de Bruijn, J. Schoonman, C.A. van Blitterswijk, K. de Groot,
Osteoclastic resorption of biomimetic calcium phosphate coatings in vitro, J. Biomed. Mater. Res. 56
(2001) 208-215.
[7] R.G. Geesink, K. de Groot, C.P. Klein, Chemical implant fixation using hydroxyl-apatite coatings. The
development of a human total hip prosthesis for chemical fixation to bone using hydroxyl-apatite coatings
on titanium substrates, Clin. Orthop. Relat. Res. (1987) 147-170.
[8] M.M. Shalabi, J.G.C. Wolke, J.A. Jansen, The effects of implant surface roughness and surgical technique
on implant fixation in an in vitro model, Clin. Oral Implants Res. 17 (2006) 172-178.
[9] M. Esposito, J.M. Hirsch, U. Lekholm, P. Thomsen, Biological factors contributing to failures of osseointe-
grated oral implants. (I) Success criteria and epidemiology, Eur. J. Oral Sci. 106 (1998) 527-551.
[10] M. Esposito, J.M. Hirsch, U. Lekholm, P. Thomsen, Biological factors contributing to failures of osseointe-
grated oral implants. (II) Etiopathogenesis, Eur. J. Oral Sci. 106 (1998) 721-764.
[11] W.-D. Müeller, U. Gross, T. Fritz, C. Voigt, P. Fischer, G. Berger, et al., Evaluation of the interface between
bone and titanium surfaces being blasted by aluminium oxide or bioceramic particles, Clin. Oral Implants
Res. 14 (2003) 349-356.
[12] L. Le Guehennec, M.A. Lopez-Heredia, B. Enkel, P. Weiss, Y. Amouriq, P. Layrolle, Osteoblastic cell
behaviour on different titanium implant surfaces, Acta Biomater. 4 (2008) 535-543.
[13] A. Citeau, J. Guicheux, C. Vinatier, P. Layrolle, T.P. Nguyen, P. Pilet, et al., In vitro biological effects of
titanium rough surface obtained by calcium phosphate grid blasting, Biomaterials 26 (2005) 157-165.
[14] S. Oh, K.S. Brammer, Y.S. Li, D. Teng, A.J. Engler, S. Chien, et al., Stem cell fate dictated solely by altered
nanotube dimension, Proc. Natl. Acad. Sci. U.S.A 106 (2009) 2130-2135.
[15] L. Zhang, Y. Han, Effect of nanostructured titanium on anodization growth of self-organized TiO 2 nano-
tubes, Nanotechnology 21 (2010) 55602.
[16] M. Paulose, K. Shankar, S. Yoriya, H.E. Prakasam, O.K. Varghese, G.K. Mor, et al., Grimes, Anodic
growth of highly ordered TiO 2 nanotube arrays to 134 microm in length, J Phys Chem B. 110(2006)
16179-16184.
[17] S.H. Kang, H.S. Kim, J.-Y. Kim, Y.-E. Sung, An investigation on electron behavior employing vertically-
aligned TiO 2 nanotube electrodes for dye-sensitized solar cells, Nanotechnology 20 (2009) 355307.
[18] K.S. Brammer, S. Oh, C. Cobb, L.M. Bjursten, H. van der Heyde, S. Jin, Improved bone-forming function-
ality on diameter-controlled TiO 2 nanotube surface, Acta Biomater. 5 (2009) 3215-3223.
[19] N.C. Geurs, R.L. Jeffcoat, E.A. McGlumphy, M.S. Reddy, M.K. Jeffcoat, Influence of implant geometry
and surface characteristics on progressive osseointegration, Int. J. Oral Maxillofac. Implants 17 (2002)
811-815.
[20] J.E. Davies, Understanding peri-implant endosseous healing, J. Dent. Educ. 67 (2003) 932-949.
[21] L. Le Guehennec, E. Goyenvalle, M.A. Lopez-Heredia, P. Weiss, Y. Amouriq, P. Layrolle,
Histomorphometric analysis of the osseointegration of four different implant surfaces in the femoral epiph-
yses of rabbits, Clin. Oral Implants Res. 19 (2008) 1103-1110.
[22] M.A. Lopez-Heredia, P. Weiss, P. Layrolle, An electrodeposition method of calcium phosphate coatings on
titanium alloy, J. Mater. Sci. Mater. Med. 18 (2007) 381-390.
[23] R.Z. LeGeros, Properties of osteoconductive biomaterials: calcium phosphates, Clin. Orthop. Relat. Res.
(2002) 81-98.
[24] R. Miller, Z. Guo, E.A. Vogler, C.A. Siedlecki, Plasma coagulation response to surfaces with nanoscale
chemical heterogeneity, Biomaterials 27 (2006) 208-215.
[25] T. Sawase, R. Jimbo, K. Baba, Y. Shibata, T. Ikeda, M. Atsuta, Photo-induced hydrophilicity enhances ini-
tial cell behavior and early bone apposition, Clin. Oral Implants Res. 19 (2008) 491-496.
[26] G. Balasundaram, M. Sato, T.J. Webster, Using hydroxyapatite nanoparticles and decreased crystallinity to
promote osteoblast adhesion similar to functionalizing with RGD, Biomaterials 27 (2006) 2798-2805.
Search WWH ::




Custom Search