Biomedical Engineering Reference
In-Depth Information
[32] L.M. Svanborg, M. Andersson, A. Wennerberg, Surface characterization of commercial oral implants on the
nanometer level, J. Biomed. Mater. Res. B 92B (2010) 462-469.
[33] C.R. Brundle, C.A Evans, Jr., S. Wilson, (Eds.), Encyclopaedia of Materials Characterization, Surfaces,
Interfaces, Thin Films, Butterworth-Heinemann, 1992 (Transmission electron microscopy).
[34] D.K. Schroder, Semiconductor Material and Device Characterization, third ed., John Wiley & Sons, New
Jersey, 2006.
[35] Z.L. Wang, P. Poncharal, W.A. de Heer, Measuring physical and mechanical properties of individual carbon
nanotubes by in-situ TEM, J. Phys. Chem. Solids 61 (2000) 1025-1030.
[36] C. Huigan, Z. Meifang, L. Yaogang, Decoration of carbon nanotubes with iron oxide, J. Solid State Chem.
179 (2006) 1208-1213.
[37] C. He, N. Zhao, C. Shi, J. Li, H. Li, Magnetic properties and transmission electron microscopy studies
of Ni nanoparticles encapsulated in carbon nanocages and carbon nanotubes, Mater. Res. Bull. 43 (2008)
2260-2265.
[38] J.P. Salvetat, J.M. Bonard, N.H. Thomson, A.J. Kulik, L. Forro, W. Benoit, et al., Mechanical properties of
carbon nanotubes, Appl. Phys. A 69 (1999) 255-260.
[39] M.V. Jose, B.W. Steinert, V. Thomas, D.R. Dean, M.A. Abdalla, G. Price, et al., Morphology and mechani-
cal properties of Nylon 6/MWNT nanofibers, Polymer 48 (2007) 1096-1104.
[40] A.V. Stanishevsky, Focused ion beam nanofabrication, in: H.S. Nalwa (Ed.), Encyclopaedia of Nanoscience
and Nanotechnology, vol. 3, American Scientific Publishers, California, USA, 2004.
[41] C.R. Musil, J.L. Bartelt, J. Melngailis, Focused ion beam microsurgery for electronics, IEEE Electron
Device Lett. vol. EDL-7 (5) (1986) 285-287.
[42] C. Boit, New physical techniques for IC functional analysis of on-chip devices and interconnects, Appl.
Surf. Sci. 252 (2005) 18-23.
[43] R. Schlangen, U. Jkerst, C. Boit, T. Malik, R. Jain, T. Lundquist, Non destructive 3D chip inspection with
nano-scale potential by use of backside FIB and backscattered electron microscopy, Microelectron. Reliab.
47 (2007) 1523-1528.
[44] S.H. Moghadam, R. Dinarvand, L.H. Cartilier, The focused ion beam technique: a useful tool for pharma-
ceutical characterization, Int. J. Pharm. 321 (2006) 50-55.
[45] C.R. Brundle, C.A. Evans, Jr., S. Wilson, (Eds.), Encyclopaedia of Materials Characterization, Surfaces,
Interfaces, Thin Films, Butterworth-Heinemann, An imprint of Elsevier, Massachusetts, USA, 1992 (X-ray
diffraction)
[46] T.E. Jennings, Semiconductor Science: Growth and Characterisation Techniques, Prentice Hall, New Jersey,
USA, 1998.
[47] W.R. Runyan, Semiconductor Measurements and Instrumentation, McGraw-Hill, New York, USA, 1975.
[48] B. Cengiz, Y. Gokce, N. Yildiz, Z. Aktas, A. Calimli, Synthesis and characterisation of hydroxyapatite
nanoparticles, Colloid Surf. A Physicochem. Eng. Asp. 322 (2008) 29-33.
[49] S.J. Gregg, K.S.W. Sing, Adsorption, Surface Area and Porosity, Academic Press, New York, 1967.
[50] P.A. Webb, C. Orr, Analytical Methods in Fine Particle Technology, Micromeritics Instrument Corp. 1997.
[51] M. Tschon, M. Fini, G. Giavaresi, L. Rimondini, L. Ambrosio, R. Giardino, In vivo preclinical efficacy of a
PDLLA/PGA porous copolymer for dental application, J. Biomed. Mater. Res. B 88B (2009) 349-357.
[52] A.D. Milutinovic-Nikolic, V.B. Medic, Z.M. Vukovic, Porosity of different dental luting cements, Dent.
Mater. 23 (2007) 674-678.
[53] E. Vennata, C. Bogicevicb, J.-M. Fleureaua, M. Degrangec, Demineralized dentin 3D porosity and pore size
distribution using mercury porosimetry, Dent. Mater. 25 (2009) 729-735.
[54] J. Goldstein, D. Newbury, D. Joy, C. Lyman, P. Echlin, E. Lifshin, et al., Scanning Electron Microscopy and
X-Ray Microanalysis, Kluwer Academic/Plenum, 2003.
[55] E. Lifshin, X-ray Characterization of Materials, John Wiley & Sons, New York, USA, 1999, ISBN-10:
3527296573.
Search WWH ::




Custom Search