Biomedical Engineering Reference
In-Depth Information
[14] L.H. He, N. Fujisawa, M.V. Swain, Elastic modulus and stress-strain response of human enamel by nanoin-
dentation, Biomaterials 27 (2006) 4388-4398.
[15] H. Tabor, Hardness of Metals, Clarendon Press, Oxford, 1951.
[16] L.H. He, M.V. Swain, Nanoindentation derived stress-strain properties of dental materials, Dent. Mater. 23
(2007) 814-821.
[17] E.G. Herbert, W.C. Oliver, G.M. Pharr, On the measurement of yield strength by spherical indentation, Phil.
Mag. 86 (33-35) (2006) 5521-5539.
[18] S.D. Mesarovic, N.A. Fleck, Spherical indentation into elastic-plastic solids, Proc. R. Soc. Lond. A 455
(1999) 2707-2728.
[19] S.F. Ang, T. Scholz, A. Klocke, G.A. Schneider, Determination of the elastic/plastic transition of human
enamel by nanoindentation, Dent. Mater. 25 (2009) 1403-1410.
[20] J. Zhou, L.L. Hsiung, Depth-dependent mechanical properties of enamel by nanoindentation, J. Biomed.
Mater. Res. 81A (1) (2007) 66-74.
[21] J. Menˇík, D. Munz, E. Quandt, E.R. Weppelmann, M.V. Swain, Determination of elastic modulus of thin
layers using nanoindentation, J. Mater. Res. 12 (9) (1997) 2475-2484.
[22] J. Menˇík, Mechanics of Components with Treated or Coated Surfaces, Kluwer Academic Publishers,
Dordrecht, 1996.
[23] M.F. Doerner, W.D. Nix, A method for interpreting the data from depth-sensing indentation instruments,
J. Mater. Res. 1 (4) (1986) 601-609.
[24] H. Gao, C.H. Chiu, J. Lee, Elastic contact versus indentation modelling of multilayered materials, Int.
J. Solids Struct. 29 (1992) 2471-2492.
[25] Menˇík J., Simple models for characterization of mechanical properties by nanoindentation. Chapter 4
in [26].
[26] Z. Bartul, J. Trenor, Advances in Nanotechnology, vol. 5, Nova Science Publishers, Hauppauge, 2011
[27] B. Jönsson, S. Hogmark, Hardness measurement of thin films, Thin Solid Films 114 (1984) 257-269.
[28] A.M. Korsunsky, M.R. McGurk, S.J. Bull, T.F. Page, On the hardness of coated systems, Surf. Coat.
Technol. 99 (1-2) (1998) 171-183.
[29] J. Nˇmeˇek, J. Lukeš, On the evaluation of elastic properties from nanoindentation of heterogeneous sys-
tems, Chem. Listy 104 (2010) s279-s282.
[30] Y.T. Cheng, C.M. Cheng, Relationships between initial unloading slope, contact depth, and mechanical
properties for conical indentation in linear viscoelastic solids, J. Mater. Res. 20 (4) (2005) 1046-1053.
[31] G. Feng, A.H.W. Ngan, Effects of creep and thermal drift on modulus measurement using depth-sensing
indentation, J. Mater. Res. 17 (3) (2002) 660-668.
[32] E.H. Lee, J.R.M. Radok, The contact problem for viscoelastic bodies, Trans. ASME Ser. E, J. Appl. Mech.
27 (1960) 438-444.
[33] M.L. Oyen, Analytical techniques for indentation of viscoelastic materials, Philos. Mag. 86 (33-35) (2006)
5625-5641.
[34] J. Menˇík, L.H. He, M.V. Swain, Determination of viscoelastic-plastic material parameters of biomaterials
by instrumented indentation, J. Mech. Behav. Biomed. 2 (2009) 318-325.
[35] J. Menˇík, L.H. He, J. Nˇmeˇek, Characterization of viscoelastic-plastic properties of solid polymers by
instrumented indentation, Polym. Test 30 (2010) 101-109.
[36] J. Menˇík, Determination of parameters of viscoelastic materials by instrumented indentation. Part 3:
Rheological model and other characteristics, Chem. Listy 104 (2010) S275-S278.
[37] B.R. Lawn, A.G. Evans, D.B. Marshall, Elastic/plastic indentation damage in ceramics: the median/radial
crack system, J. Am. Ceram. Soc. 63 (910) (1980) 574-581.
[38] T. Zhang, Y. Feng, R. Yang, P. Jiang, A method to determine fracture toughness using cube-corner
indentation, Scr. Mater. 62 (2010) 199-201.
Search WWH ::




Custom Search