Biomedical Engineering Reference
In-Depth Information
[21] H. Li-Hong, V.S. Michael, Nanoindentation creep behavior of human enamel, J. Biomed. Mater. Res. A
91A (2) (2009) 352-359.
[22] S. Park, J.B. Quinn, E. Romberg, D. Arola, On the brittleness of enamel and selected dental materials,
Dent. Mater. 24 (11) (2008) 1477-1485.
[23] Y.L. Chan, A.H.W. Ngan, N.M. King, Use of focused ion beam milling for investigating the mechanical
properties of biological tissues: a study of human primary molars, J. Mech. Behav. Biomed. Mater. 2 (4)
(2009) 375-383.
[24] Y.L. Chan, A.H.W. Ngan, N.M. King, Degraded prism sheaths in the transition region of hypomineralized
teeth, J. Dent. 38 (2010) 237-244.
[25] Y. Yuan, R. Verma, Measuring microelastic properties of stratum corneum, Colloids Surf. B Biointerfaces
48 (1) (2006) 6-12.
[26] D.M. Ebenstein, L.A. Pruitt, Nanoindentation of soft hydrated materials for application to vascular tissues,
J. Biomed. Mater. Res. A 69A (2) (2004) 222-232.
[27] P.K. Zysset, X.E. Guo, C.E. Hoffler, K.E. Moore, S.A. Goldstein, Elastic modulus and hardness of cortical
and trabecular bone lamellae measured by nanoindentation in the human femur, J. Biomech. 32 (10) (1999)
1005-1012.
[28] C.E. Hoffler, K.E. Moore, K. Kozloff, P.K. Zysset, M.B. Brown, S.A. Goldstein, Heterogeneity of bone
lamellar-level elastic moduli, Bone 26 (6) (2000) 603-609.
[29] A.B. Mann, J.B. Pethica, Nanoindentation studies in a liquid environment, Langmuir 12 (19) (1996)
4583-4586.
[30] B. Tang, A.H.W. Ngan, Nanoindentation measurement of mechanical properties of soft solid covered by a
thin liquid film, Soft Mater. 5 (4) (2007) 169-181.
[31] T. Zhang, Y. Feng, R. Yang, P. Jiang, A method to determine fracture toughness using cube-corner indenta-
tion, Scr. Mater. 62 (4) (2010) 199-201.
[32] S.F. Ang, T. Scholz, A. Klocke, G.A. Schneider, Determination of the elastic/plastic transition of human
enamel by nanoindentation, Dental Mater. 25 (11) (2009) 1403-1410.
[33] B.N. Lucas, W.C. Oliver, Indentation power-law creep of high-purity indium, Metall. Mater. Trans. A 30 (3)
(1999) 601-610.
[34] G. Feng, A.H.W. Ngan, Effects of creep and thermal drift on modulus measurement using depth-sensing
indentation, J. Mater. Res. 17 (3) (2002) 660-668.
[35] M. Balooch, I.-C. Wu-Magidi, A. Balazs, A.S. Lundkvist, S.J. Marshall, G.W. Marshall, et al., Viscoelastic
properties of demineralized human dentin measured in water with atomic force microscope (AFM)-based
indentation, J. Biomed. Mater. Res. 40 (4) (1998) 539-544.
[36] A. Braly, L.A. Darnell, A.B. Mann, M.F. Teaford, T.P. Weihs, The effect of prism orientation on the inden-
tation testing of human molar enamel, Arch. Oral Biol. 52 (9) (2007) 856-860.
[37] H. Fong, M. Sarikaya, S.N. White, M.L. Snead, Nano-mechanical properties profiles across dentin-enamel
junction of human incisor teeth, Mater. Sci. Eng. C 7 (2) (2000) 119-128.
[38] J. Ge, F.Z. Cui, X.M. Wang, H.L. Feng, Property variations in the prism and the organic sheath within
enamel by nanoindentation, Biomaterials 26 (16) (2005) 3333-3339.
[39] B. Tang, A.H.W. Ngan, J.B. Pethica, A method to quantitatively measure the elastic modulus of materials in
nanometer scale using atomic force microscopy, Nanotechnology 19 (49) (2008).
[40] A.H.W. Ngan, B. Tang, Response of power-law-viscoelastic and time-dependent materials to rate jumps,
J. Mater. Res. 24 (3) (2009) 853-862.
[41] G. Simmons, H. Wang, Single Crystal Elastic Constants and Calculated Aggregate Properties: A Handbook,
The MIT Press, Cambridge, 1971.
[42] L.H. He, M.V. Swain, Influence of environment on the mechanical behaviour of mature human enamel,
Biomaterials 28 (30) (2007) 4512-4520.
Search WWH ::




Custom Search