Biomedical Engineering Reference
In-Depth Information
References
[1] B. Vanmeerbeek, G. Willems, J.P. Celis, J.R. Roos, M. Braem, P. Lambrechts, et al., Assessment by nano-
indentation of the hardness and elasticity of the resin-dentin bonding area, J. Dent. Res. 72 (10) (1993)
1434-1442.
[2] L.H. He, M.V. Swain, Understanding the mechanical behaviour of human enamel from its structural and
compositional characteristics, J. Mech. Behav. Biomed. Mater. 1 (1) (2008) 18-29.
[3] V. Imbeni, J.J. Kruzic, G.W. Marshall, S.J. Marshall, R.O. Ritchie, The dentin-enamel junction and the frac-
ture of human teeth, Nature Mat. 4 (3) (2005) 229-232.
[4] G.W. Marshall, Jr., M. Balooch, R.R. Gallagher, S.A. Gansky, S.J. Marshall, Mechanical properties of the
dentinoenamel junction: AFM studies of nanohardness, elastic modulus, and fracture, J. Biomed. Mater.
Res. 54 (1) (2001) 87-95.
[5] E.K. Mahoney, R. Rohanizadeh, F.S.M. Ismail, N.M. Kilpatrick, M.V. Swain, Mechanical properties and
microstructure of hypomineralised enamel of permanent teeth, Biomaterials 25 (20) (2004) 5091-5100.
[6] Z.H. Xie, E.K. Mahoney, N.M. Kilpatrick, M.V. Swain, M. Hoffman, On the structure-property relationship
of sound and hypomineralized enamel, Acta Biomater. 3 (6) (2007) 865-872.
[7] L. Angker, M.V. Swain, N. Kilpatrick, Characterising the micro-mechanical behaviour of the carious den-
tine of primary teeth using nano-indentation, J. Biomech. 38 (7) (2005) 1535-1542.
[8] W.C. Oliver, G.M. Pharr, An improved technique for determining hardness and elastic-modulus using load
and displacement sensing indentation experiments, J. Mater. Res. 7 (6) (1992) 1564-1583.
[9] J.-Y. Rho, T.Y. Tsui, G.M. Pharr, Elastic properties of human cortical and trabecular lamellar bone mea-
sured by nanoindentation, Biomaterials 18 (20) (1997) 1325-1330.
[10] M. Erik, A. Sailaja, Q. Yi-Xian, The effects of embedding material, loading rate and magnitude, and pen-
etration depth in nanoindentation of trabecular bone, J. Biomed. Mater. Res. A 79A (1) (2006) 86-93.
[11] S. Habelitz, S.J. Marshall, G.W. Marshall, M. Balooch, Mechanical properties of human dental enamel on
the nanometre scale, Arch. Oral Biol. 46 (2) (2001) 173-183.
[12] S.P. Ho, H. Goodis, M. Balooch, G. Nonomura, S.J. Marshall, G. Marshall, The effect of sample prepara-
tion technique on determination of structure and nanomechanical properties of human cementum hard tis-
sue, Biomaterials 25 (19) (2004) 4847-4857.
[13] J. Xu, J.Y. Rho, S.R. Mishra, Z. Fan, Atomic force microscopy and nanoindentation characterization of
human lamellar bone prepared by microtome sectioning and mechanical polishing technique, J. Biomed.
Mater. Res. A 67A (3) (2003) 719-726.
[14] J.-Y. Rho, G.M. Pharr, Effects of drying on the mechanical properties of bovine femur measured by nanoin-
dentation, J. Mater. Sci. Mater. Med. 10 (8) (1999) 485-488.
[15] M.W. Jameson, J.A.A. Hood, B.G. Tidmarsh, The effects of dehydration and rehydration on some mechani-
cal properties of human dentine, J. Biomech. 26 (9) (1993) 1055-1065.
[16] J.J. Kruzic, R.K. Nalla, J.H. Kinney, R.O. Ritchie, Crack blunting, crack bridging and resistance-curve frac-
ture mechanics in dentin: effect of hydration, Biomaterials 24 (28) (2003) 5209-5221.
[17] G. Guidoni, J. Denkmayr, T. Schöberl, I. Jäger, Nanoindentation in teeth: influence of experimental condi-
tions on local mechanical properties, Philos. Mag. 86 (33-35) (2006) 5705-5714.
[18] M.B. Gustafson, R.B. Martin, V. Gibson, D.H. Storms, S.M. Stover, J. Gibeling, et al., Calcium buffering is
required to maintain bone stiffness in saline solution, J. Biomech. 29 (9) (1996) 1191-1194.
[19] S. Habelitz, G.W. Marshall, M. Balooch, S.J. Marshall, Nanoindentation and storage of teeth, J. Biomech.
35 (7) (2002) 995-998.
[20] S.P. Ho, P. Senkyrikova, G.W. Marshall, W. Yun, Y. Wang, K. Karan, et al., Structure, chemical composition
and mechanical properties of coronal cementum in human deciduous molars, Dent. Mater. 25 (10) (2009)
1195-1204.
 
Search WWH ::




Custom Search