Biomedical Engineering Reference
In-Depth Information
[3] C. Hollins, Levison's, Textbook for Dental Nurses, 10th ed., Blackwell Muckgaurd (2008) John Wiley &
Sons, UK.
[4] M. Ring, Behind the dentist's drill, Invention & Technology Fall (1995) 25.
[5] A.W. Roger, Textbook of Anatomy, Churchill Livingstone, Edinburgh, 1992.
[6] I. Watanabe, C. Ohkubo, J.P. Ford, M. Atsuta, T. Okabe, Cutting efficiency of air-turbine burs on cast tita-
nium and dental casting alloys, Dent. Mater. 16 (2000) 420.
[7] J.F. McCabe, Applied Dental Materials, seventh ed., Blackwell Scientific Publication, Oxford, 1992.
[8] BS 6828-4: 1987; EN 28323: 1991; ISO 3823-2: 1986. Dental rotary instruments. Part 4. Specification for steel
and carbide finishing burs.
[9] BS 6828-9: 1987; EN 28325: 1989; ISO 8325; 1985. Dental rotary instruments. Part 9. Methods of test.
[10] M.S. Pines, A. Schulman, Characterization of wear of tungsten carbide burs, J. Am. Dent. Assoc. 99 (1979)
831.
[11] G.A. Lammie, The effects of restorative materials on plaque composition, Dent. Rec. 71 (1972) 286.
[12] H. Sein, W. Ahmed, M.J. Jackson, R. Woodwards, R. Polini, Performance and characterisation of CVD dia-
mond coated, sintered diamond and WC-Co cutting tools for dental and micromachining applications, Thin
Solid Films 447-448 (2004) 455.
[13] S.R. Bradbury, D.B. Lewis, P.M. Archer, W. Ahmed, Impact of surface engineering technologies on the per-
formance and life of multipoint cutting tools, Surf. Coating. Tech. 91 (1997) 192.
[14] R. Glenner, A. Davis, S. Burns, The American Dentist, Pictorial Richard Histories Publishing Co., Missoula,
MT, 1990.
[15] H. Sein, W. Ahmed, C. Rego, Application of diamond coatings onto small dental tools, Diam. Relat. Mater.
11 (2002) 731.
[16] D.B. Dietz, P.M. Di Fiore, J.K. Bahcall, E.P. Lautenschlager, Effect of rotational speed on the breakage of
nickel-titanium rotary files, J. Endod 26 (2000) 68-71.
[17] M.B. Rowan, J.I. Nicholls, J. Steiner, Torsional properties of stainless steel and nickel-titanium, steel and
nickel-titanium endodontic files, J. Endod. 22 (1996) 341-345.
[18] J. Silvaggio, M.L. Hicks, Effect of heat sterilization on the torsional properties of rotary nickel-titanium
files, J. Endod. 23 (1997) 731.
[19] BS 6828-4: 1987; EN 28323: 1991; ISO 3823-2: 1986. Dental rotary instruments. Part 4. Specification for
steel and carbide finishing burs.
[20] BS 6828-9: 1987; EN 28325: 1989; ISO 8325; 1985. Dental rotary instruments. Part 9. Methods of test.
[21] A.A. Caputo, J.P. Standlee, Biomechanics in Clinical Dentistry, Quintessence Book, Chicago, IL, 1987.
[22] M.N. Yoder, in: K.E. Spear, J.P. Dismukes, (Eds.), Synthetic Diamond: Emerging CVD Science and
Technology, first ed., John Wiley & Sons, New York, 1994
[23] P. Harris, High-resolution electron microscopy studies of a microporous carbon produced by Arc-
evaporation, J. Chem. Soc. Faraday Trans. 90 (18) (1994) 2799-2802.
[24] J.E. Field, The Properties of Natural and Synthetic Diamond, Academic Press, London, 1992.
[25] F.P. Brundy, H.T. Hall, H.M. Strong, R.H. Wentorf, Man-made diamonds, Nature 176 (1955) 51.
[26] H. Liu, D.S. Dandy, D. Haber, Diamond Chemical Vapour Deposition, William Andrew Publishing, USA,
1997.
[27] K. Nassau, J. Nassau, The history and present status of synthetic diamond, J. Cryst. Growth 46 (1979) 157.
[28] E. Bruton, Diamonds, NAG, London, 1978. 1
[29] W.G. Eversole, US Patent 3030188, April 1962.
[30] J.C. Angus, Diamond and diamond-like films, Thin Solid Films 216 (1992) 126.
[31] P.W. May, Diamond Thin Films: A 21st Century Material, Phil. Trans. R. Soc. Lond. A 358 (2000) 473-495.
[32] S. Matsumoto, Y. Sato, M. Kamo, N. Setaka, Vapor deposition of diamond particles from methane, Jpn. J.
Appl. Phys. 21 (1982) L183.
[33] S. Matsumoto, Y. Sato, M. Tsutsumi, N. Setaka, Growth of diamond particles from methane-hydrogen gas,
J. Mater. Sci. 17 (1982) 3106.
Search WWH ::




Custom Search