Biomedical Engineering Reference
In-Depth Information
[17] S. Vauthey, S. Santoso, H. Gong, N. Watson, S. Zhang, Molecular self-assembly of surfactant-like peptides
to form nanotubes and nanovesicles, Proc. Natl. Acad. Sci. U.S.A. 99 (2002) 5355.
[18] J. Kisiday, M. Jin, B. Kurz, H. Hung, C. Semino, S. Zhang, et al., Self-assembling peptide hydrogel fosters
chondrocyte extracellular matrix production and cell division: implications for cartilage tissue repair, Proc.
Natl. Acad. Sci. U.S.A. 99 (2002) 9996.
[19] S. Zhang, F. Gelain, X. Zhao, Designer self-assembling peptide nanofiber scaffolds for 3D tissue cell cul-
tures, Semin. Cancer Biol. 15 (2005) 413.
[20] V.F.M. Segers, R.T. Lee, Local delivery of proteins and the use of self-assembling peptides, Drug Discov.
Today 12 (2007) 561.
[21] T.C. Holmes, S. de Lacalle, X. Su, G. Liu, A. Rich, S. Zhang, Extensive neurite outgrowth and active syn-
apse formation on self-assembling peptide scaffolds, Proc. Natl. Acad. Sci. U.S.A. 97 (2000) 6728.
[22] M.E. Davis, J.P. Motion, D.A. Narmoneva, T. Takahashi, D. Hakuno, R.D. Kamm, et al., Injectable self-
assembling peptide nanofibers create intramyocardial microenvironments for endothelial cells, Circulation
111 (2005) 442.
[23] M. Antonietti, Surfactants for novel templating applications, Curr. Opin. Coll. Int. Sci. 6 (2001) 244.
[24] M. Yang, J. Jiang, Y. Lu, Y. He, G. Shen, R. Yu, Functional histidine/nickel hexacyanoferrate nanotube
assembly for biosensor applications, Biomaterials 28 (2007) 3408.
[25] C.H. Görbitz, An exceptionally stable peptide nanotube system with flexible pores, Acta Crystallogr. B 58
(2002) 849.
[26] S.R. Whaley, D.S. English, E.L. Hu, P.F. Barbara, A.M. Belcher, Selection of peptides with semiconductor
binding specificity for directed nanocrystal assembly, Nature 405 (2000) 665.
[27] M. Altman, P. Lee, A. Rich, S. Zhang, Conformational behavior of ionic self-complementary peptides,
Protein Sci. 9 (2000) 1095.
[28] J.W. Jarvik, C.A. Telmer, Epitope tagging, Annu. Rev. Genet. 32 (1998) 601.
[29] G. Rigaut, A. Shevchenko, B. Rutz, M. Wilm, M. Mann, B. Seraphin, A generic protein purification method
for protein complex characterization and proteome exploration, Nat. Biotechnol. 17 (1999) 1030.
[30] H. Matsui, B. Gologan, Crystalline glycylglycine bolaamphiphile tubules and their pH-sensitive structural
transformation, J. Phys. Chem. B 104 (2000) 3383.
[31] H. Matsui, R. MacCuspie, Metalloporphyrin nanotube fabrication using peptide nanotubes as templates,
Nano Lett. 1 (2001) 671.
[32] H. Matsui, P. Porrata, G.E. Douberly, Protein tubule immobilization on self-assembled monolayers on Au
substrates, Nano Lett. 1 (2001) 461.
[33] M.R. Caplan, P.N. Moore, S. Zhang, R.D. Kamm, D.A. Lauffenburger, Self-assembly of a b -sheet protein
is governed by relief of electrostatic repulsion relative to van der Waals attraction, Biomacromolecules 1
(2000) 627.
[34] D.M. Marini, W. Hwang, D.A. Lauffenburger, S. Zhang, R.D. Kamm, Left-handed helical ribbon intermedi-
ates in the self-assembly of a beta-sheet peptide, Nano Lett. 2 (2002) 295.
[35] C.A. Hauser, S. Zhang, Designer self-assembling peptide nanofiber biological materials, Chem. Soc. Rev.
(2010) 2780.
[36] J.D. Hartgerink, E. Beniash, S.I. Stupp, Peptide-amphiphile nanofibers: A versatile scaffold for the prepara-
tion of self-assembling materials, Proc. Natl. Acad. Sci. U.S.A. 99 (2002) 5133.
[37] E. Beniash, J.D. Hartgerink, H. Storrie, J.C. Stendahl, S.I. Stupp, Self-assembling peptide amphiphile nano-
fiber matrices for cell entrapment, Acta Biomater. 1 (2005) 387.
[38] S. Zhang, Building from bottom-up, Mat. Today 5 (2003) 20.
[39] M. Long, H.J. Rack, Titanium alloys in total joint replacement-a materials materials science perspective,
Biomaterials 19 (1998) 1621.
[40] E.B. Taddei, V.A.R. Henriques, C.R.M. Silva, C.A.A. Cairo, Production of new titanium alloy for orthope-
dic implants, Mat. Sci. Eng. C 24 (2004) 683.
Search WWH ::




Custom Search