Biomedical Engineering Reference
In-Depth Information
[82] P. Wick, P. Manser, L.K. Limbach, U. Dettlaff-Weglikowska, F. Krumeich, S. Roth, et al., The degree and
kind of agglomeration affect carbon nanotube toxicity, Toxicol. Lett. 168 (2007) 121.
[83] P. Wick, P. Manser, P. Spohn, A. Bruinink, In-vitro evaluation of possible adverse effects of nanosized
materials, Phys. Status Solidi 243 (2006) 3556.
[84] A.A. Shvedova, V. Castranova, E.R. Kisin, D. Schwegler-Berry, A.R. Murray, V.Z. Gandelsman, et al.,
Exposure to carbon nanotube material: assessment of nanotube cytotoxicity using human keratinocyte
cells. Toxicol. Environ. Health A 66 (2003) 1909.
[85] J.L. McKenzie, M.C. Waid, R. Shi, T.J. Webster, Decreased functions of astrocytes on carbon nanofiber
materials, Biomaterials 25 (2004) 1309.
[86] H. Hu, Y.C. Ni, V. Montana, R.C. Haddon, V. Parpura, Chemically functionalized carbon nanotubes as
substrates for neuronal growth, Nano Lett. 4 (2004) 507.
[87] T. Gabay, E. Jakobs, E. Ben-Jacob, Y. Hanein, Engineered selforganization of neural networks using car-
bon nanotube clusters, Physica A 250 (2005) 611.
[88] H. Hu, Y. Ni, V. Montana, R.C. Haddon, V. Parpura, Chemically functionalized carbon nanotubes as sub-
strates for neuronal growth, Nano Lett. 4 (2004) 507.
[89] H. Hu, Y. Ni, S.K. Mandal, V. Montana, B. Zhao, R.C. Haddon, et al., Polyethyleneimine functionalized
single-walled carbon nanotubes as a substrate for neuronal growth, J. Phys. Chem. B 109 (2005) 4285.
[90] S.Y. Park, S.Y. Park, S. Namgung, B. Kim, J. Im, J.Y. Kim, et al., Carbon nanotube monolayer patterns for
directed growth of mesenchymal stem cells, Adv. Mater. 19 (2007) 2530.
[91] L.P. Zanello, B. Zhao, H. Hu, R.C. Haddon, Bone cell proliferation on carbon nanotubes, Nano Lett. 6
(2006) 562.
[92] K.L. Elias, R.L. Price, T.J. Webster, Enhanced functions of osteoblasts on nanometer diameter carbon
fibers, Biomaterials 23 (2002) 3279.
[93] P.R. Supronowicz, P.M. Ajayan, K.R. Ullmann, B.P. Arulanandam, D.W. Metzger, R. Bizios, Novel
current-conducting composite substrates for exposing osteoblasts to alternating current stimulation,
J. Biomed. Mater. Res. 59 (2002) 499.
[94] M. Wang, Developing bioactive composite materials for tissue replacement, Biomaterials 24 (2003)
2133.
[95] R. Murugan, S. Ramakrishna, Development of nanocomposites for bone grafting, Compos. Sci. Tech. 65
(2005) 2385.
[96] E.M. Christenson, K.S. Anseth, J.J.J.P. van den Beucken, C.K. Chan, B. Ercan, J.A. Jansen, et al.,
Nanobiomaterial applications in orthopedics, J. Orthop. Res. 25 (2007) 11.
[97] X.-L. Deng, G. Sui, M.-L. Zhao, G.-Q. Chen, X.-P. Yang, Poly(L-lactic acid)/hydroxyapatite hybrid nano-
firous scaffolds prepared by electrospinning, J. Biomater. Sci. Polym. Ed. 18 (2007) 117.
[98] G. Sui, X. Yang, F. Mei, X. Hu, G. Chen, X. Deng, et al., Poly-L-lactic acid/hydroxyapatite hybrid mem-
brane for bone tissue regeneration, J. Biomed. Mater. Res. A 82 (2007) 445.
[99] H.J. Gong, X.P. Yang, X.L. Deng, X.Y. Hu, Study on PLA/MWNT/HA hybrid nanofibers prepared via
electrospinning technology, Acta Polym. Sin. 2 (2005) 297.
[100] H.-W. Kim, H.-H. Lee, J.C. Knowles, Electrospinning biomedical nanocomposite fibers of hydroxyapatite/
poly(lactic acid) for bone regeneration, J. Biomed. Mater. Res. A 79 (2006) 643.
[101] V. Thomas, S. Jagani, K. Johnson, M.V. Jose, D.R. Dean, Y.K. Vohra, et al., Electrospun bioactive nano-
composite scaffolds of polycaprolactone and nanohydroxyapatite for bone tissue engineering, J. Nanosci.
Nanotechnol. 6 (2006) 487.
[102] Y. Ito, H. Hasuda, M. Kamitakahara, C. Ohtsuki, M. Tanihara, I.K. Kang, et al., A composite of hydroxyapatite
with electrospun biodegradable nanofibers as a tissue engineering material, J. Biosci. Bioeng. 100 (2005) 43.
[103] M.V. Jose, V. Thomas, K.T. Johnson, D.R. Dean, E. Nyairo, Aligned PLGA/HA nanofibrous nanocompos-
ite scaffolds for bone tissue engineering, Acta Biomater. 5 (2009) 305.
Search WWH ::




Custom Search