Biomedical Engineering Reference
In-Depth Information
10.5 CONCLUSIONS
With respect to PLLA/MWCNTs/HA membranes, PLLA is absorbable, while HA is a major inor-
ganic component of bone and has shown good osteoconductivity and bone-bonding ability, although
it cannot be degraded in the human body. CNTs can be used not only to stimulate bone regeneration
but also to serve a permanent mechanical role. Therefore, PLLA/MWCNTs/HA membranes need not
be taken out after healing, which lightens the burden of patients. Although more extensive work is
required to investigate the exact mechanism, the unique biologic properties of the PLLA/MWCNTs/
HA membrane have shown great potential for application in GTR. Compared with commercial or in
research GTR membranes of similar function, this new type of material fabricated via electrospin-
ning simplifies the manufacturing process, lowers the fabrication cost, and avoids possible mistakes
in clinical application.
References
[1] B.B. Benatti, K.G. Silvério, M.Z. Casati, E.A. Sallum, F.H. Nociti, Jr., Physiological features of periodon-
tal regeneration and approaches for periodontal tissue engineering utilizing periodontal ligament cells,
J. Biosci. Bioeng. 103 (2007) 1.
[2] P.M Bartold, C.A. McCulloch, A.S. Narayanan, S. Pitaru, Tissue engineering: a new paradigm for periodon-
tal regeneration based on molecular and cell biology, Periodontal 24 (2000) 253.
[3] H.E Grupe, R.F Warren, Repair of gingival defects by a sliding flap operation, J. Periodontol. 27 (1956) 92.
[4] S.W. Nelson, The subpedicle connective tissue graft. A bilaminar reconstructive procedure for the coverage
of denuded root surfaces, J. Periodontol. 58 (1987) 95.
[5] S. Jepsen, J. Eberhard, D. Herrera, I. Needleman, A systematic review of guided tissue regeneration for
periodontal furcation defects. What is the effect of guided tissue regeneration compared with surgical
debridement in the treatment of furcation defects? J. Clin. Periodontol. 29 (2002) 103.
[6] I. Needleman, R. Tucker, E. Giedrys-Leeper, H. Worthington, A systematic review of guided tissue regen-
eration for periodontal infrabony defects, J. Periodontal Res. 37 (2002) 380.
[7] M. Shimono, T. Ishikawa, H. Ishikawa, H. Matsuzaki, S. Hashimoto, T. Muramatsu, et al., Regulatory
mechanisms of periodontal regeneration, Microsc. Res. Tech. 60 (2003) 491.
[8] S. Amar, Implications of cellular and molecular biology advances in periodontal regeneration, Anat. Rec.
245 (1996) 361.
[9] M.J. Danesh-Meyer, U.M.E. Wikesjö, Gingival recession defects and guided tissue regeneration: a review,
J. Periodontal Res. 36 (2001) 341.
[10] T. Karring, S. Nyman, J. Lindhe, Healing following implantation of periodontitis affected roots into bone
tissue, J. Clin. Periodontal 7 (1980) 96.
[11] S. Nyman, J. Gottlow, T. Karring, J. Lindhe, The regenerative potential of the periodontal ligament. An
experimental study in the monkey, J Clin. Periodontol. 9 (1982) 257.
[12] R.S. Bhumbra, A.B Berman, P.S Walker, D.S Barrett, G.W. Blunn, Enhanced bone regeneration and formation
around implants using guided bone regeneration, J. Biomed. Mater. Res. (Appl. Biomater.) 43 (1998) 162.
[13] A. Stavropoulos, T. Karring, Long-term stability of periodontal conditions achieved following guided tis-
sue regeneration with bioresorbable membranes: case series results after 6-7 years, J. Clin. Periodontol. 31
(2004) 939.
[14] G. Zellin, A. Gritli-Linde, A. Linde, Healing of mandibular defects with different biodegradable and non-
biodegradable membranes: an experimental study in rats, Biomaterials 16 (1995) 601.
[15] A. Piattelli, A. Scarano, M. Paolantonio, Bone formation inside the material interstices of e-PTFE mem-
branes: a light microscopical and histochemical study in man, Biomaterials 17 (1996) 1725.
 
Search WWH ::




Custom Search