Biomedical Engineering Reference
In-Depth Information
[64] M.M. Deckers, R.L. van Bezooijen, G. van der Horst, J. Hoogendam, C. van Der Bent, S.E. Papapoulos,
et al., Bone morphogenetic proteins stimulate angiogenesis through osteoblast-derived vascular endothelial
growth factor A, Endocrinology 143 (4) (2002) 1545-1553.
[65] R.A. Carano, E.H. Filvaroff, Angiogenesis and bone repair, Drug Discov. Today 8 (21) (2003) 980-989.
[66] T. Furumatsu, Z.N. Shen, A. Kawai, K. Nishida, H. Manabe, T. Oohashi, et al., Vascular endothelial
growth factor principally acts as the main angiogenic factor in the early stage of human osteoblastogenesis,
J. Biochem. 133 (5) (2003) 633-639.
[67] H.P. Gerber, T.H. Vu, A.M. Ryan, J. Kowalski, Z. Werb, N. Ferrara, VEGF couples hypertrophic cartilage
remodeling, ossification and angiogenesis during endochondral bone formation, Nat. Med. 5 (6) (1999)
623-628.
[68] J.M. Kanczler, R.O. Oreffo, Osteogenesis and angiogenesis: the potential for engineering bone, Eur. Cell
Mater. 15 (2008) 100-114.
[69] C. Wolf-Brandstetter, A. Lode, T. Hanke, D. Scharnweber, H. Worch, Influence of modified extracellular
matrices on TI6AL4V implants on binding and release of VEGF, J. Biomed. Mater. Res. 79 (4) (2006)
882-894.
[70] C.K. Poh, Z. Shi, T.Y. Lim, K.G. Neoh, W. Wang, The effect of VEGF functionalization of titanium on
endothelial cells in-vitro , Biomaterials (2009) 4.
[71] L. Tang, J.W. Eaton, Natural responses to unnatural materials: a molecular mechanism for foreign body
reactions, Mol. Med. 5 (6) (1999) 351-358.
[72] L. Chenglong, Y. Dazhi, L. Guoqiang, Q. Min, Corrosion resistance and hemocompatibility of multilayered
Ti/TiN-coated surgical AISI 316L stainless steel, Mater. Lett. 59 (29-30) (2005) 3813-3819.
[73] M. Terada, S. Abe, T. Akasaka, M. Uo, Y. Kitagawa, F. Watari, Multiwalled carbon nanotube coating on
titanium, Biomed. Mater. Eng. 19 (1) (2009) 45-52.
[74] P. Roach, D. Farrar, C.C. Perry, Surface tailoring for controlled protein adsorption: effect of topography at
the nanometer scale and chemistry, J. Am. Chem. Soc. 128 (12) (2006) 3939-3945.
[75] K.S. Brammer, S. Oh, C.J. Cobb, L.M. Bjursten, H. van der Heyde, S. Jin, Improved bone-forming func-
tionality on diameter-controlled TiO(2) nanotube surface, Acta Biomater. 5 (8) (2009) 3215-3223.
[76] K.S. Brammer, S. Oh, J.O. Gallagher, S. Jin, Enhanced cellular mobility guided by TiO 2 nanotube surfaces,
Nano Lett. 8 (3) (2008) 786-793.
[77] B. Chi, E.S. Victorio, T. Jin, Synthesis of TiO 2 -based nanotube on Ti substrate by hydrothermal treatment,
J. Nanosci. Nanotechnol. 7 (2) (2007) 668-672.
[78] D. Ding, C. Ning, L. Huang, F. Jin, Y. Hao, S. Bai, et al., Anodic fabrication and bioactivity of Nb-doped
TiO 2 nanotubes, Nanotechnology 20 (30) (2009) 305103.
[79] S. Oh, K.S. Brammer, Y.S. Li, D. Teng, A.J. Engler, S. Chien, et al., Stem cell fate dictated solely by altered
nanotube dimension, Proc. Natl. Acad. Sci. USA 106 (7) (2009) 2130-2135.
[80] K.C. Popat, L. Leoni, C.A. Grimes, T.A. Desai, Influence of engineered titania nanotubular surfaces on
bone cells, Biomaterials 28 (21) (2007) 3188-3197.
[81] T. Sjostrom, M.J. Dalby, A. Hart, R. Tare, R.O. Oreffo, B. Su, Fabrication of pillar-like titania nano-
structures on titanium and their interactions with human skeletal stem cells, Acta Biomater. 5 (5) (2009)
1433-1441.
[82] T. Sjostrom, N. Fox, B. Su, Through-mask anodization of titania dot- and pillar-like nanostructures on bulk
Ti substrates using a nanoporous anodic alumina mask, Nanotechnology 20 (13) (2009) 135305.
[83] Z. Huang, R.H. Daniels, R.J. Enzerink, V. Hardev, V. Sahi, S.B. Goodman, Effect of nanofiber-coated
surfaces on the proliferation and differentiation of osteoprogenitors in-vitro , Tissue Eng. 14 (11) (2008)
1853-1859.
[84] J. He, W. Zhou, X. Zhou, X. Zhong, X. Zhang, P. Wan, et al., The anatase phase of nanotopography tita-
nia plays an important role on osteoblast cell morphology and proliferation, J. Mater. Sci. 19 (11) (2008)
3465-3472.
Search WWH ::




Custom Search