Biomedical Engineering Reference
In-Depth Information
[41] R.E. Baier, Surface properties influencing biological adhesion, in: R.S. Manly, (Ed.), Adhesion in Biological
Systems, Academic Press, New York, 1970, pp. 15-48.
[42] J.M. Williams, R.A. Buchanan, Ion implantation of surgical Ti-6Al-4V alloy, Mater. Sci. Eng. A. 69 (1)
(1985) 237.
[43] Y. Ku, C.P. Chung, J.H. Jang, The effect of the surface modification of titanium using a recombinant frag-
ment of fibronectin and vitronectin on cell behaviour, Biomaterials 26 (25) (2005) 5153.
[44] S. Bierbaum, R. Beutner, T. Hanke, D. Scharnweber, U. Hempel, H. Worch, Modification of Ti6Al4V surfaces
using collagen I, III, and fibronectin. I. Biochemical and morphological characteristics of the adsorbed matrix,
J. Biomed. Mater. Res. A. 67 (2) (2003) 421.
[45] S. Bierbaum, U. Hempel, U. Geissler, T. Hanke, D. Scharnweber, K.W. Wenzel, et al., Modification of
Ti6AL4V surfaces using collagen I, III, and fibronectin. II. Influence on osteoblast responses, J. Biomed.
Mater. Res. A. 67 (2) (2003) 431.
[46] M. Morra, C. Cassinelli, G. Cascardo, P. Cahalan, L. Cahalan, M. Fini, et al., Surface engineering of tita-
nium by collagen immobilization. Surface characterization and in-vitro and in-vivo studies, Biomaterials 24
(25) (2003) 4639.
[47] D. Scharnweber, R. Born, K. Flade, S. Roessler, M. Stoelzel, H. Worch, Mineralization behaviour of col-
lagen type I immobilized on different substrates, Biomaterials 25 (12) (2004) 2371.
[48] M Dettin, MT Conconi, R Gambaretto, A Bagno, C. Di Bello, A.M. Menti, et al., Effect of synthetic pep-
tides on osteoblast adhesion, Biomaterials 26 (22) (2005) 4507.
[49] H. Zreiqat, F.A. Akin, C.R. Howlett, B. Markovic, D. Haynes, S. Lateef, et al., Differentiation of human
bone-derived cells grown on GRGDSP-peptide bound titanium surfaces, J. Biomed. Mater. Res. A. 64 (1)
(2003) 105.
[50] B. Elmengaard, J.E. Bechtold, K. Soballe, In-vivo effects of RGD-coated titanium implants inserted in two
bone-gap models, J. Biomed. Mater. Res. A. 75 (2) (2005) 249.
[51] S.J. Xiao, M. Textor, N.D. Spencer, M. Wieland, B. Keller, H. Sigrist, Immobilization of the cell-adhesive
peptide arg-gly-asp-cys (RGDC) on titanium surfaces by covalent chemical attachment, J. Mater. Sci.
Mater. Med. 8 (12) (1997) 867.
[52] Y. Liu, L. Enggist, A.F. Kuffer, D. Buser, E.B. Hunziker, The influence of BMP-2 and its mode of delivery
on the osteoconductivity of implant surfaces during the early phase of osseointegration, Biomaterials 28
(16) (2007) 2677.
[53] J. Hall, R.G. Sorensen, J.M. Wozney, U.M. Wikesjo, Bone formation at rhBMP-2-coated titanium implants
in the rat ectopic model, J. Clin. Periodontol. 34 (5) (2007) 444.
[54] E.P. Briggs, A.R. Walpole, P.R. Wilshaw, M. Karlsson, E. Pålsgård, Formation of highly adherent nano-
porous alumina on Ti-based substrates: a novel bone implant coating, J. Mater. Sci. Mater. Med. 15 (9)
(2004) 1021.
[55] A.R. Walpole, E.P. Briggs, M. Karlsson, E. Pålsgård, P.R. Wilshaw, Nano-porous alumina coatings for
improved bone implant interfaces, Materialwiss. Werkstofftech. 34 (12) (2003) 1064.
[56] M. Karlsson, E. Pålsgård, P.R. Wilshaw, L. Di Silvio, Initial in-vitro interaction of osteoblasts with nano-
porous alumina, Biomaterials 24 (18) (2003) 3039.
[57] L. Guo, H. Li, Fabrication and characterization of thin nano-hydroxyapatite coatings on titanium, Surf.
Coating Tech. 185 (2-3) (2004) 268.
[58] J. Yang, L. Guo, H. Li, Sol-gel preparation of ultrathin nano-hydroxyapatite coating and its characteriza-
tion, Sheng Wu Yi Xue Gong Cheng Xue Za Zhi 23 (5) (2006) 1075.
[59] R. Hu, C.J. Lin, H.Y. Shi, A novel ordered nano hydroxyapatite coating electrochemically deposited on tita-
nium substrate, J. Biomed. Mater. Res. A. 80 (3) (2007) 687.
[60] J. Huang, S.N. Jayasinghe, X. Su, Z. Ahmad, S.M. Best, M.J. Edirisinghe, et al., Electrostatic atomisation
spraying: a novel deposition method for nano-sized hydroxyapatite, Key Engineering Materials 309-311 (I)
(2006) 635.
Search WWH ::




Custom Search