Cryptography Reference
In-Depth Information
LEMMA 2.24
Let E be the ellipticcurve y 2 = x 3 + Ax + B .Fixapoint ( u, v ) on E .W rite
( x, y )+( u, v )=( f ( x, y ) ,g ( x, y )) ,
where f ( x, y ) and g ( x, y ) are rationalfunctions of x, y (the coe cients depend
on ( u, v ) )and y is regarded as a function of x satisfying dy/dx =(3 x 2 +
A ) / (2 y ) .Then
d
dx f ( x, y )
g ( x, y )
1
y .
=
PROOF The addition formulas give
f ( x, y )= y v
x − u
2
− x − u
v ) 3 + x ( y
u ) 2 +2 u ( y
u ) 2
u ) 3
g ( x, y )=
( y
v )( x
v )( x
v ( x
( x
u ) 3
dx f ( x, y )= 2 y ( y v )( x u ) 2( y v ) 2
( x − u ) 3
d
.
( x − u ) 3
A straightforward but lengthy calculation, using the fact that 2 yy =3 x 2 + A ,
yields
d
dx f ( x, y ) − g ( x, y ))
( x − u ) 3 ( y
= v ( Au + u 3
− v 2
− Ax − x 3 + y 2 )+ y ( −Au − u 3 + v 2 + Ax + x 3
− y 2 ) .
Since ( u, v )and( x, y )areon E ,wehave v 2 = u 3 + Au + B and y 2 = x 3 + Ax + B .
Therefore, the above expression becomes
v (
B + B )+ y ( B
B )=0 .
Therefore, y dx f ( x, y )= g ( x, y ).
REMARK 2.25 Lemma 2.24 is perhaps better stated in terms of differ-
entials. It says that the differential dx/y is translation invariant. In fact, it
is the unique translation invariant differential, up to scalar multiples, for E .
See [109].
LEMMA 2.26
Let α 1 2 3 be nonzero endom orphism s of an ellipticcurve E with α 1 + α 2 =
α 3 .W rite
α j ( x, y )=( R α j ( x ) ,yS α j ( x )) .
 
Search WWH ::




Custom Search