Cryptography Reference
In-Depth Information
-3404372409, 2800656, -3416385600, 5958184124547072,
10091699281/2737152, [195.1547871847901607239497645,
75.00000000000000000000000000, -270.1547871847901607239497645],
0.1986024692687475355260042188, 0.1567132675477145982613047883*I,
-6.855899811988574944063544705, -21.22835194662770142565252843*I,
0.03112364190214999895971387115]
The output contains several parameters for the curve (type ?ellinit to
see an explanation). For example, the periods ω 1 = i 0 . 156713 ... and ω 2 =
0 . 198602 ... are entries. The j -invariant is the 13th entry:
? e1[13]
%2 = 10091699281/2737152
Here is the curve E 2 : y 2 = x 3 + 73:
? e2=ellinit([0,0,0,0,73])
%3 = [0, 0, 0, 0, 73, 0, 0, 292, 0, 0, -63072, -2302128, 0,
[-4.179339196381231892056376349, 2.089669598190615946028188174
+ 3.619413915098187674530455654*I, 2.089669598190615946028188174
-3.619413915098187674530455654*I], 2.057651708004923756251055780,
-1.028825854002461878125527890+0.5939928837575679811100134634*I,
-2.644469941892436553395125300, 1.322234970946218276697562650
-2.290178149223208371431388983*I, 1.222230471806529890431614914]
We can add the p oints (2 , 9) and (3 , 10), which lie on the curve:
? elladd(e2,[2,9],[3,10])
%4 = [-4, -3]
We can compute the 3rd multiple of (2 , 9):
? ellpow(e2,[2,9],3)
%5 = [5111/625, -389016/15625]
The torsion subgroup of the Mordell-Weil group can be computed:
? elltors(e1)
%6 = [10, [10], [[3, 1944]]]
? elltors(e2)
%7 = [1, [], []]
The first output says that the torsion subgroup of E 1 ( Q ) has order 10, it
is cyclic of order 10, and it is generated by the point (3 , 1944). The second
output says that the torsion subgroup of E 2 ( Q ) is trivial.
The number of points on an elliptic curve mod a prime p has the form
p +1
a p . The value of a 13 for E 1 is computed as follows:
? ellap(e1,13)
%8=4
Therefore, there are 13 + 1 4 = 10 points on E 1 mod 13.
Search WWH ::




Custom Search