Cryptography Reference
In-Depth Information
Similarly,
g nV + nW ( X )
g nV ( X ) g nW ( X
d ( V + nU, W )=
V
nU )
g nV + nW ( X )
g nV ( X ) g nW ( X
g nW ( X − V )
g nW ( X
=
V )
V
nU )
= d ( V,W ) e n ( nU, nW ) ,
where the last equality uses the definition of the Weil pairing (Equation
(11.6)).
LEMMA 11.23
d ( U, V )
d ( V,U )
= d ( V,W ) d ( U + W, V )
d ( V,U + W ) d ( W, V ) .
PROOF
The definition of d applied twice yields
g nU +( nV + nW ) ( X )= d ( U, V + W ) g nU ( X ) g nV + nW ( X
U )
= d ( U, V + W ) g nU ( X ) d ( V,W ) g nV ( X
U ) g nW ( X
U
V ) .
Similarly,
g ( nU + nV )+ nW ( X )= d ( U + V,W ) g nU + nV ( X ) g nW ( X − U − V )
= d ( U + V,W ) d ( U, V ) g nU ( X ) g nV ( X
U ) g nW ( X
U
V ) .
Since g nU +( nV + nW ) = g ( nU + nV )+ nW , we can cancel like terms and obtain
d ( U, V + W ) d ( V,W )= d ( U + V,W ) d ( U, V ) .
(11.11)
Interchange U and V in (11.11) and divide to obtain
d ( U, V )
d ( V,U )
= d ( U, V + W ) d ( V,W )
d ( V,U + W ) d ( U, W ) .
(11.12)
Now switch V and W in 11.11, solve for d ( U, W ), and substitute in (11.12) to
obtain the result.
LEMMA 11.24
Let S, T ∈ E [ n ] .Then
e n ( S, T )= c ( S, T )
c ( T,S ) .
PROOF Choose U, V ∈ E [ n 2 ]sothat nU = S, nV = T . The left-hand
side of the formula in the previous lemma does not depend on W . Therefore
 
Search WWH ::




Custom Search