Cryptography Reference
In-Depth Information
PROPOSITION 9.25
If 0 <k< 1 ,then
K ( k )= I 1 , 1 − k 2 = I (1 + k, 1
k ) .
PROOF
K ( k )= 1
0
dt
(1 − t 2 )(1 − k 2 t 2 )
= π/ 2
0
1
(let t =sin θ )
k 2 sin 2 θ
= π/ 2
0
cos 2 θ +(1 − k 2 )sin 2 θ
= I (1 , 1
k 2 )
= I (1 + k, 1 − k ) .
The last equation follows from Proposition 9.24, with a =1+ k and b =1
k .
Putting everything together, we can now express the periods ω 1 and ω 2 in
terms of arithmetic-geometric means.
THEOREM 9.26
Suppose E isgiven by
y 2 =4 x 3
− g 2 x − g 3 =4( x − e 1 )( x − e 2 )( x − e 3 )
with real n u m bers e 1 <e 2 <e 3 .Then Z ω 1 + Z ω 2 isalattice for E ,where
πi
ω 1 =
M ( e 3
e 1 , e 2
e 1 )
π
M ( e 3 − e 1 , e 3 − e 2 ) .
ω 2 =
PROOF
We have, with k as in (9.19),
4
ω 2 =
e 3
e 1 + e 3
e 2 K ( k )
4
e 3 − e 1 + e 3 − e 2 I (1 + k, 1 − k ) .
Use the definition (9.19) of k and the relation cI ( ca, cb )= I ( a, b )with
c = e 3
=
e 1 + e 3
e 2
2
 
Search WWH ::




Custom Search