Cryptography Reference
In-Depth Information
Then
I a + b
2
, ab = I ( a, b ) .
M oreover,
π/ 2
M ( a, b ) .
I ( a, b )=
PROOF Let u = b tan θ . The integral becomes
I ( a, b )=
0
( u 2 + a 2 )( u 2 + b 2 ) = 1
du
du
( u 2 + a 2 )( u 2 + b 2 ) .
2
−∞
Therefore,
I a + b
2
, ab = 1
2
du
( u 2 +( a + b
.
) 2 )( u 2 + ab )
−∞
2
Let
v
,
ab
v
u = 1
2
0 <v<
.
Then v = u + u 2 + ab .Since
u 2 + a + b
2
2
1
4 v 2 ( v 2 + a 2 )( v 2 + b 2 ) ,
=
it is straightforward to obtain
I a + b
2
, ab =
0
dv
( v 2 + a 2 )( v 2 + b 2 ) = I ( a, b ) .
By induction, we obtain
I ( a, b )= I ( a 1 ,b 1 )= I ( a 2 ,b 2 )=
···
.
Let
a = b = M ( a, b ) = lim
n
a n = lim
n
b n .
→∞
→∞
It is fairly easy to justify taking the limit inside the integral sign to obtain
I ( a, b ) = lim
n
I ( a n ,b n )
→∞
= I ( a ,b )
= π/ 2
0
a 2
sin 2 θ
cos 2 θ + b 2
π/ 2
1
M ( a, b )
cos 2 θ +sin 2 θ
=
0
π/ 2
M ( a, b ) .
=
 
Search WWH ::




Custom Search