Cryptography Reference
In-Depth Information
be points on E ,where y i
Q and a i ,b i are integers with gcd( a i ,b i ) = 1. Let
g 1 =2( a 1 b 2 + a 2 b 1 )( Ab 1 b 2 + a 1 a 2 )+4 Bb 1 b 2
g 2 =( a 1 a 2
Ab 1 b 2 ) 2
4 B ( a 1 b 2 + a 2 b 1 ) b 1 b 2
a 2 b 1 ) 2 .
g 3 =( a 1 b 2
Then a short calculation shows that
a 3
b 3
+ a 4
b 4
= g 1
a 3 a 4
b 3 b 4
= g 2
g 3 ,
g 3 .
LEMMA 8.20
Let c 1 ,c 2 ,d 1 ,d 2
Z .Then
Max( |c 1 |, |d 1 | ) · Max( |c 2 |, |d 2 | ) 2Max( |c 1 c 2 |, |c 1 d 2 + c 2 d 1 |, |d 1 d 2 | ) .
PROOF
(other-
wise, switch c 1 ,d 1 ). Let L denote the left side of the inequality of the lemma
and let R denote the right side. There are three cases to consider.
Without loss of generality, we may assume that
|
c 1 |≤|
d 1 |
1. If
|
c 2 |≤|
d 2 |
,then L =
|
d 1 d 2 |
and 2
|
d 1 d 2 |≤
R ,so L
R .
2. If
|
c 2 |≥|
d 2 |≥
(1 / 2)
|
c 2 |
,then L =
|
d 1 c 2 |
and
R ≥ 2 |d 1 d 2 |≥|d 1 c 2 |≥L.
3. If |d 2 |≤ (1 / 2) |c 2 | ,then L = |d 1 c 2 | and
R
c 1 d 2 + c 2 d 1 |
2( |c 2 d 1 |−|c 1 d 2 | )
2( |c 2 d 1 |−|d 1 | (1 / 2) |c 2 | )
= |c 2 d 1 | = L.
2
|
This completes the proof of the lemma.
LEMMA 8.21
Let c 1 ,c 2 ,d 1 ,d 2 Z with gcd( c i ,d i )=1 for i =1 , 2 .Then
gcd( c 1 c 2 ,c 1 d 2 + c 2 d 1 ,d 1 d 2 )=1 .
PROOF Let d =gcd( c 1 d 2 + c 2 d 1 ,d 1 d 2 ). Suppose p is a prime such that
p|c 1 and p|d .Then p d 1 since gcd( c 1 ,d 1 ) = 1. Since p|d 1 d 2 ,wehave p|d 2 .
Therefore, p c 2 . Therefore, p|c 1 d 2 and p c 2 d 1 ,so p c 1 d 2 + c 2 d 1 . Therefore
p d , contradiction. Similarly, there is no prime dividing both c 2 and d .It
Search WWH ::




Custom Search