Biomedical Engineering Reference
In-Depth Information
It follows from (9.22) that
P 2 (; b n ; b n ) 2P[`(; b n ; 0 )(; b n ; b n )] + o p (1):
(9.23)
Because 2ab 2a 2 + 2 1 b 2
for any a;b 2 R, then by (9.23) we have
P 2 (; b n ; b n ) 2P` 2 (; b n ; 0 ) + 2 1 P 2 (; b n ; b n ) + o p (1):
This implies
P 2 (; b n ; b n ) 4P` 2 (; b n ; 0 ) + o p (1) = 4P` 2 (; 0 ; 0 ) + o p (1):
(9.24)
Therefore, P 2 (; b n ; b n ) = O p (1). Consequently,
P 2 (; 0 ; b n ) = O p (1):
(9.25)
By the definition of 0 , `(x; 0 ; 0 ) and (x; 0 ;) are orthogonal in L 2 (P), that
is, P[`(; 0 ; 0 )(; 0 ;)] = 0 for any 2H. We have
P[`(; b n ; 0 )(; b n ; b n )]
Pf[`(; b n ; 0 ) `(; 0 ; 0 )][(; b n ; b n ) (; 0 ; b n )]g
=
+Pf`(; 0 ; 0 )[(; b n ; b n ) (; 0 ; b n )]g
+Pf(; 0 ; b n )[`(; b n ; 0 ) `(; 0 ; 0 )]g:
This equation, (9.25), assumption (A2), and the Cauchy{Schwarz inequality
imply that
P[`(; b n ; 0 )(; b n ; b n )] ! p 0:
(9.26)
Combining (9.23) and (9.26), we obtain
P 2 (; b n ; b n ) ! p 0:
(9.27)
Now,
P` 2 (b n ; b n ; x)
P` 2 (; 0 ; 0 ) + 2P[`(; 0 ; 0 )f`(; b n ; 0 ) `(; 0 ; 0 )g]
+P[`(; b n ; 0 ) `(; 0 ; 0 )] 2
+2P[`(; b n ; 0 )(; b n ; b n )] + P 2 (; b n ; b n ):
=
 
Search WWH ::




Custom Search