Biomedical Engineering Reference
In-Depth Information
[75] S. Opsahl Vital, C. Gaucher, C. Bardet, P.S. Rowe, A. George, A. Linglart, et al., Tooth dentin defects
reflect genetic disorders affecting bone mineralization, Bone 50 (4) (2012) 989 997.
[76] K.G. Waymire, J.D. Mahuren, J.M. Jaje, T.R. Guilarte, S.P. Coburn, G.R. MacGregor, Mice lacking tis-
sue non-specific alkaline phosphatase die from seizures due to defective metabolism of vitamin B-6,
Nat. Genet. 11 (1) (1995) 45
51.
[77] K.N. Fedde, L. Blair, J. Silverstein, S.P. Coburn, L.M. Ryan, R.S. Weinstein, et al., Alkaline phosphatase
knock-out mice recapitulate the metabolic and skeletal defects of infantile hypophosphatasia, J. Bone
Miner. Res. 14 (12) (1999) 2015 2026.
[78] L. Ye, M. MacDougall, S. Zhang, Y. Xie, J. Zhang, Z. Li, et al., Deletion of dentin matrix protein-1
leads to a partial failure of maturation of predentin into dentin, hypomineralization, and expanded cavi-
ties of pulp and root canal during postnatal
tooth development, J. Biol. Chem. 279 (18) (2004)
19141 19148.
[79] L. Ye, Y. Mishina, D. Chen, H. Huang, S.L. Dallas, M.R. Dallas, et al., Dmp1-deficient mice display
severe defects in cartilage formation responsible for a chondrodysplasia-like phenotype, J. Biol. Chem.
280 (7) (2005) 6197 6203.
[80] J.Q. Feng, L.M. Ward, S. Liu, Y. Lu, Y. Xie, B. Yuan, et al., Loss of DMP1 causes rickets and osteoma-
lacia and identifies a role for osteocytes in mineral metabolism, Nat. Genet. 38 (11) (2006) 1310 1315.
[81] S.C. Manolagas, Birth and death of bone cells: basic regulatory mechanisms and implications for the
pathogenesis and treatment of osteoporosis, Endocr. Rev. 21 (2) (2000) 115 137.
[82] J.E. Aubin, J.T. Triffitt, Mesenchymal stem cells and osteoblast differentiation, in: J.P. Bilezikian,
L.G. Raisz, G.A. Rodan (Eds.), Principles of Bone Biology, second ed. Vol. 1, Academic Press,
San Diego, CA, 2002, pp. 59 81.
[83] K. Nakashima, X. Zhou, G. Kunkel, Z. Zhang, J.M. Deng, R.R. Behringer, et al., The novel zinc finger-
containing transcription factor osterix is required for osteoblast differentiation and bone formation, Cell
108 (1) (2002) 17 29.
[84] P. Ducy, R. Zhang, V. Geoffroy, A.L. Ridall, G. Karsenty, Osf2/Cbfa1: a transcriptional activator of
osteoblast differentiation, Cell 89 (5) (1997) 747 754.
[85] C. Banerjee, L.R. McCabe, J.Y. Choi, S.W. Hiebert, J.L. Stein, G.S. Stein, et al., Runt homology domain
proteins in osteoblast differentiation: AML3/CBFA1 is a major component of a bone-specific complex,
J. Cell Biochem. 66 (1) (1997) 1
8.
[86] J.E. Aubin, Advances in the osteoblast lineage, Biochem. Cell Biol. 76 (6) (1998) 899 910.
[87] S.L. Teitelbaum, Bone resorption by osteoclasts, Science 289 (5484) (2000) 1504 1508.
[88] C.D. Seaborn, F.H. Nielsen, Silicon deprivation decreases collagen formation in wounds and bone, and
ornithine transaminase enzyme activity in liver, Biol. Trace Elem. Res. 89 (3) (2002) 251 261.
[89] C.D. Seaborn, F.H. Nielsen, Dietary silicon and arginine affect mineral element composition of rat femur
and vertebra, Biol. Trace Elem. Res. 89 (3) (2002) 239 250.
[90] S.I. Anderson, S. Downes, C.C. Perry, A.M. Caballero, Evaluation of the osteoblast response to a silica
gel in vitro, J. Mater. Sci. Mater. Med. 9 (12) (1998) 731 735.
[91] M. Wiens, X. Wang, U. Schlossmacher, I. Lieberwirth, G. Glasser, H. Ushijima, et al., Osteogenic poten-
tial of biosilica on human osteoblast-like (SaOS-2) cells, Calcif. Tissue Int. 87 (6) (2010) 513 524.
[92] I.R. Gibson, S.M. Best, W. Bonfield, Chemical characterization of silicon-substituted hydroxyapatite,
J. Biomed. Mater. Res. 44 (4) (1999) 422 428.
[93] P.E. Keeting, M.J. Oursler, K.E. Wiegand, S.K. Bonde, T.C. Spelsberg, B.L. Riggs, Zeolite A increases
proliferation, differentiation, and transforming growth factor beta production in normal adult human
osteoblast-like cells in vitro, J. Bone Miner. Res. 7 (11) (1992) 1281 1289.
Search WWH ::




Custom Search