Biomedical Engineering Reference
In-Depth Information
[55] J. Zheng, Q. Su, C. Wang, G. Cheng, R. Zhu, J. Shi, et al., Synthesis and biological evaluation of PMMA/
MMT nanocomposite as denture base material, J. Mater. Sci. Mater. Med. 22 (4) (2011) 1063 1071.
[56] M. Tian, Y. Gao, Y. Liu, Y. Liao, N.E. Hedin, H. Fong, Fabrication and evaluation of Bis-GMA/
TEGDMA dental resins/composites containing nano fibrillar silicate, Dent. Mater. 24 (2) (2008)
235
243.
[57] T.N.A.T. Rahim, D. Mohamad, A.R. Ismaila, H.M. Akil, Synthesis of nanosilica fillers for experimental
dental nanocomposites and their characterisations, J. Phys. Sci. 22 (1) (2011) 93 105.
[58] J. Janus, G. Fauxpoint, Y. Arntz, H. Pelletier, O. Etienne, Surface roughness and morphology of three
nanocomposites after two different polishing treatments by a multitechnique approach, Dent. Mater. 26 (5)
(2010) 416 425.
[59] M.H. Chen, Update on dental nanocomposites, J. Dent. Res. 89 (6) (2010) 549 560.
[60] T.N.A.T. Rahim, D. Mohamad, A.R. Ismail, H.M. Akil, Synthesis of nanosilica fillers for experimental
dental nanocomposites and their characterization, J. Phys. Sci. 22 (2) (2011) 93 105.
[61] S.P. Samuel, S. Li, I. Mukherjee, Y. Guo, A.C. Patel, G. Baran, et al., Mechanical properties of experi-
mental dental composites containing a combination of mesoporous and nonporous spherical silica as
fillers, Dent. Mater. 25 (3) (2009) 296 301.
[62] W.J. Loesche, Role of Streptococcus mutans in human dental decay, Microbiol. Rev. 50 (4) (1986)
353 380.
[63] C.M. Bollen, P. Lambrechts, M. Quirynen, Comparison of surface roughness of oral hard materials to the
threshold surface roughness for bacterial plaque retention: a review of the literature, Dent. Mater. 13 (4)
(1997) 258 269.
[64] B.C. Lee, G.Y. Jung, D.J. Kim, J.S. Han, Initial bacterial adhesion on resin, titanium and zirconia
in vitro, J. Adv. Prosthodont. 3 (2) (2011) 81 84.
[65] N. Mitik-Dineva, J. Wang, R.C. Mocanasu, P.R. Stoddart, R.J. Crawford, E.P. Ivanova, Impact of nano-
topography on bacterial attachment, Biotechnol. J. 3 (4) (2008) 536 544.
[66] W. Teughels, N. Van Assche, I. Sliepen, M. Quirynen, Effect of material characteristics and/or surface
topography on biofilm development, Clin. Oral. Implants Res. 17 (Suppl. 2) (2006) 68 81.
[67] K. Subramani, R.E. Jung, A. Molenberg, C.H. Hammerle, Biofilm on dental implants: a review of the
literature, Int. J. Oral. Maxillofac. Implants 24 (4) (2009) 616
626.
[68] L.D. Renner, D.B. Weibel, Physicochemical regulation of biofilm formation, MRS Bull. 36 (5) (2011)
347 355.
[69] A. Linde, Dentin matrix proteins: composition and possible functions in calcification, Anat. Rec. 224 (2)
(1989) 154 166.
[70] M. Kitagawa, H. Tahara, S. Kitagawa, H. Oka, Y. Kudo, S. Sato, et al., Characterization of established
cementoblast-like cell lines from human cementum-lining cells in vitro and in vivo, Bone 39 (5) (2006)
1035 1042.
[71] S.M. Carvalho, A.A. Oliveira, C.A. Jardim, C.B. Melo, D.A. Gomes, M.D. Leite, et al., Characterization
and induction of cementoblast cell proliferation by bioactive glass nanoparticles, J. Tissue Eng. Regen.
Med. (2011).
[72] V.E. Arana-Chavez, L.F. Massa, Odontoblasts:
the cells forming and maintaining dentin, Int. J.
Biochem. Cell Biol. 36 (8) (2004) 1367 1373.
[73] S.W. Cho, H.J. Hwang, J.Y. Kim, W.C. Song, S.J. Song, H. Yamamoto, et al., Lineage of non-cranial
neural crest cell in the dental mesenchyme: using a lacZ reporter gene during early tooth development,
J. Electron. Microsc. (Tokyo) 52 (6) (2003) 567 571.
[74] F. Long, Building strong bones: molecular regulation of the osteoblast lineage, Nat. Rev. Mol. Cell.
Biol. 13 (1) (2012) 27 38.
Search WWH ::




Custom Search