Biomedical Engineering Reference
In-Depth Information
[211] H. Li, et al., In vivo evaluation of acute toxicity of water-soluble carbon nanotubes, Toxicol. Environ.
Chem. 93 (2011) 603 615.
[212] J. Muller, et al., Respiratory toxicity of multi-wall carbon nanotubes, Toxicol. Appl. Pharmacol. 207
(2005) 221 231.
[213] C.W. Lam, et al., Pulmonary toxicity of single-wall carbon nanotubes in mice 7 and 90 days after intra-
tracheal instillation, Toxicol. Sci. 77 (2004) 126
134.
[214] A.A. Shvedova, et al., Inhalation vs. aspiration of single-walled carbon nanotubes in C57BL/6 mice:
inflammation, fibrosis, oxidative stress, and mutagenesis, Am. J. Physiol. Lung Cell. Mol. Physiol. 295
(2008) L552 L565.
[215] A.A. Shvedova, et al., Unusual inflammatory and fibrogenic pulmonary responses to single-walled car-
bon nanotubes in mice, Am. J. Physiol. Lung Cell. Mol. Physiol. 289 (2005) L698 L708.
[216] M.L. Schipper, et al., A pilot toxicology study of single-walled carbon nanotubes in a small sample of
mice, Nat. Nanotechnol. 3 (2008) 216 221.
[217] Y. Usui, et al., Carbon nanotube with high bone tissue compatibility and bone-formation acceleration
effects, Small 4 (2008) 240 246.
[218] B. Sitharaman, et al., In vivo biocompatibility of ultra-short single-walled carbon nanotube/biodegrad-
able polymer nanocomposite for bone tissue engineering, Bone 43 (2008) 362 370.
[219] M. Bhattacharya, et al., Bone formation on carbon nanotube composite, J. Biomed. Res. 96A (2011)
75 82.
[220] W. Wang, et al., Mechanical properties and biological behavior of carbon nanotube/polycarbosilane
composites for implant materials, J. Biomed. Res. B Appl. Biomater. 82B (2007) 223 230.
[221] S. Koyama, et al., Medical application of carbon nanotube-filled nanocomposites: the microcatheter,
Small 2 (2006) 1406 1411.
[222] R. Langer, J.P. Vacanti, Tissue engineering, Science 260 (1993) 920 926.
[223] J. Meng, et al., Using single-walled carbon nanotubes nonwoven films as scaffolds to enhance long-
term cell proliferation in vitro, J. Biomed. Res. 79A (2006) 298 306.
[224] M.A. Correa-Duarte, et al., Fabrication and biocompatibility of carbon nanotube-based 3D networks as
scaffolds for cell seeding and growth, Nano Lett. 4 (2004) 2233
2236.
[225] R.A. MacDonald, et al., Collagen-carbon nanotube composite materials as scaffolds in tissue engineer-
ing, J. Biomed. Res. 74A (2005) 489
496.
[226] K. Balani, et al., Plasma-sprayed carbon nanotube reinforced hydroxyapatite coatings and their
interaction with human osteoblasts in vitro, Biomaterials 28 (2007) 618 624.
[227] R. Verdejo, et al., Reactive polyurethane carbon nanotube foams and their interactions with osteoblasts,
J. Biomed. Res. 88 (2009) 65 73.
[228] L.P. Zanello, et al., Bone cell proliferation on carbon nanotubes, Nano Lett. 6 (2006) 562 567.
[229] B. Zhao, et al., A bone mimic based on self-assembly of hydroxyapatite on chemically functionalized
single-walled carbon nanotubes, Chem. Mater. 17 (2005) 3235 3241.
[230] J. Meng, et al., Improving the blood compatibility of polyurethane using carbon nanotubes as fillers
and its implications to cardiovascular surgery, J. Biomed. Res. 74A (2005) 208 214.
[231] J.N. Xie, et al., Somatosensory neurons grown on functionalized carbon nanotube mats, Smart Mater.
Struct. 15 (2006) N85 N88.
[232] H. Hu, et al., Polyethyleneimine functionalized single walled carbon nanotubes as substrate for neuronal
growth, J. Phys. Chem. B 109 (2005) 4285 4289.
[233] H. Hu, et al., Chemically functionalized carbon nanotubes as substrates for neuronal growth, Nano Lett.
4 (2004) 507 511.
[234] E. Zhang, et al., Surface modification and microstructure of single-walled carbon nanotubes for dental
resin-based composites, J. Biomed. Res. B Appl. Biomater. 86 (2008) 90 97.
Search WWH ::




Custom Search