Biomedical Engineering Reference
In-Depth Information
[31] J. Elisseeff, W. McIntosh, K. Fu, T. Blunk, R. Langer, Controlled-release of IGF-I and TGF- β 1ina
photopolymerizing hydrogel for cartilage tissue engineering, J. Orthop. Res. 19 (2001) 1098 1104.
[32] G. Wei, P.X. Ma, Macroporous and nanofibrous polymer scaffolds and polymer/bone-like apatite com-
posite scaffolds generated by sugar spheres, J. Biomed. Mater. Res. A 78 (2006) 306 315.
[33] Q. Jin, G. Wei, Z. Lin, J. Sugai, S. Lynch, P.X. Ma, Nanofibrous scaffolds incorporating PDGF-BB
microspheres induce chemokine expression and tissue neogenesis in vivo, PloS One 3 (2008) e1729.
[34] A. Christoph, J. Roland, J.S. Roswitha, B. Christian, H. Julia, E. Wolf, et al., Magnetic drug targeting—
biodistribution of the magnetic carrier and the chemotherapeutic agent mitoxantrone after loco-regional
cancer treatment, J. Drug Target. 11 (3) (2003) 139 149.
[35] A.A. Bhirde, V. Patel, J. Gavard, G. Zhang, A.A. Sousa, et al., Targeted killing of cancer cells in vivo
and in vitro with EGF-directed carbon nanotube-based drug delivery, ACS Nano 3 (2009) 307 316.
[36] S. Costigan, The toxicology of nanoparticles used in healthcare products. , http://www.mhra.gov.uk/
Safetyinformation/Generalsafetyinformationandadvice/Technicalinformation/Nanotechnology/index.htm/ . ,
2006 (accessed 05.09.12).
[37] W. DeJong, P. Borm, Drug delivery and nanoparticles: applications and hazards, Int. J. Nanomed. 3
(2008) 133 149.
[38] V. Olivier, J.L. Duval, M. Hindie, P. Pouletaut, M.D. Nagel, Comparative particle-induced cytotoxicity
toward macrophages and fibroblasts, Cell Biol. Toxicol. 19 (3) (2003) 145 159.
[39] K.H. Park, M. Chhowalla, Z. Iqbal, F. Sesti, Single-walled carbon nanotubes are a new class of ion chan-
nel blockers, J. Biol. Chem. 278 (50) (2003) 50212 50216.
[40] A. Radomski, P. Jurasz, D. Alonso-Escolano, M. Drews, M. Morandi, T. Malinski, et al., Nanoparticle-
induced platelet aggregation and vascular thrombosis, Br. J. Pharm. 146 (6) (2005) 882 893.
[41] D. Shen, Toxicokinetics, in: C. Klassen, J. Watkins, III (Eds.), Casarett and Doull's Essentials of
Toxicology, second ed., McGraw-Hill, NewYork, NY, 2010 (online access).
[42] J. Zhou, V. Castranova, Toxicology of nanomaterials used in nanomedicine, J. Toxicol. Environ. Health
Part B 14 (2011) 593 632.
[43] V.E. Kagan, N.V. Konduru, W. Feng, B.L. Allen, J. Conroy, Y. Volkov, et al., Carbon nanotubes
degraded by neutrophil myeloperoxidase induce less pulmonary inflammation, Nat. Nanotechnol. 5
(2010) 354
359.
[44] M. Cho, W.S. Cho, M. Choi, S.J. Kim, B.S. Han, S.H. Kim, et al., The impact of size on tissue distribu-
tion and elimination by single intravenous injection of silica nanoparticles, Toxicol. Lett. 189 (2009)
177 183.
[45] G. Oberdorster, E. Oberdorster, J. Oberdorster, Nanotoxicology: an emerging discipline evolving from
studies of ultrafine particles, Environ. Health Perspect. 113 (2005) 823 839.
[46] J.I. Phillips, F.Y. Green, J.C. Davies, J. Murray, Pulmonary and systemic toxicity following exposure to
nickel nanoparticles, Am. J. Ind. Med. 53 (2010) 763 767.
[47] M.L. Schipper, N. Nakayama-Ratchford, C.R. Davis, N.W. Kam, P. Chu, Z. Liu, et al., A pilot toxicol-
ogy study of single-walled carbon nanotubes in a small sample of mice, Nat. Nanotechnol. 3 (2008)
216 221.
[48] C. Poland, R. Duffin, I. Kinloch, A. Wallace, A. Seaton, V. Stone, et al., Carbon nanotubes introduced
into the abdominal cavity of mice show asbestos-like pathogenicity in a pilot study, Nat. Nanotechnol. 3
(2008) 423 428.
[49] T. Ken, S. Ken-ichiro, I. Aki, K.-I. Miyoko, F. Rie, T. Masako, et al., Nanoparticles transferred from
pregnant mice to their offspring can damage the genital and cranial nerve systems, J. Health Sci. 55
(2009) 95 102.
[50] T. Tsuchiya, I. Oguri, Y.N. Yamakoshi, N. Miyata, Novel harmful effects of fullerene on mouse embryos
in vitro and in vivo, FEBS Lett. 393 (1996) 139 145.
Search WWH ::




Custom Search