Biomedical Engineering Reference
In-Depth Information
[74] S. Kim, Regulation of pulpal blood flow, J. Dent. Res. (1985) 590 596.
[75] Regenerative endodontics, Dent. Clin. N. Am., 2012 (in press).
[76] K.M. Galler, R.N. D'Souza, Tissue engineering approaches for regenerative dentistry, Regen. Med. 6
(2011) 111 240.
[77] D. Tziafas, K. Kondonas, Differentiation potential of dental papilla, dental pulp and apical papilla pro-
genitor cells, J. Endod. 36 (2010) 781
789.
[78] K.M. Galler, R.N. D'Souza, J.D. Hartgerink, et al., Scaffolds for dental pulp tissue engineering, Adv.
Dent. Res. 23 (2011) 333 339.
[79] E.M. Mullane, Z. Dong, C. Sedgley, et al., Effects of VEGF and FGF2 on the revasculature of severed
human dental pulps, J. Dent. Res. 87 (2008) 1144 1148.
[80] H. Lovschall, M. Tummers, I. Thesleff, et al., Activation of the NOTCH signaling pathways in response
to pulp capping of rat molars, Eur. J. Oral Sci. 113 (2005) 312 317.
[81] Y. Yuan, Y. Shimada, S. Ichinose, et al., Qualitative analysis of adhesive interface nanoleakage using
FE-SEM/EDS, Dent. Mater. 23 (2007) 561 569.
[82] F. Fioretti, C. Mendoza-Palomares, M.C. Avoaka-Boni, et al., Nanostructured assemblies for endodontic
regeneration, J. Biomed. Nanotechnol. 7 (2011) 471 475.
[83] M. Dundar, M. Ozcan, M.E. Comlekoglu, et al., Nanoleakage inhibition within hybrid layer using new
protective chemicals and their effect on adhesion, J. Dent. Res. 90 (2011) 93 98.
[84] A. Mine, J. De Munck, A. Van Ende, et al., TEM characterization if a silorane composite bonded to
enamel/dentin, Dent. Mater. 26 (2010) 524 532.
[85] M. Hanabusa, A. Mine, T. Kuboki, et al., TEM interfacial characterization of an experimental self-
adhesive material bonded to enamel/dentin, Dent. Mater. 27 (2011) 818 824.
[86] D.S. Brauer, J.F. Gilton, G.W. Marshall, et al., Nano- and micromechanical properties of dentin: investi-
gation if differences with tooth side, J. Biomech. 44 (2011) 1626 1629.
[87] C. Sedgely, H.H. Messer, Are endodontically treated teeth more brittle? J. Endod. 18 (1992) 332 335.
[88] R.A. Cheron, G.W. Marshall, H.E. Goodis, Nanomechannical properties of endodontically treated teeth,
J. Endod. 37 (2011) 1562 1565.
[89]
J.H. Kinney, S.J. Marshall, G.W. Marshall, The nanomechanical properties of human dentin: a critical
review and re-evalutation of the literature, Cri. Rev. Oral Bio. Med. (2003) 13
29.
[90] A. Nazari, B. Bajaj, D. Zhang, et al., Aging and reduction in fracture toughness of human dentin,
J. Mech. Behav. Biomed. Mater. 2 (2009) 550 559.
[91] R. Kanaparthy, A. Kanaparthy, The changing face of dentistry: nanotechnology, Int. J. Neuromed. 6
(2011) 2799 2804.
[92] R.A. Freitas Jr., Nanodentistry, J. Am. Dent. Assoc. 131 (2000) 1559 1565.
[93] P.E. Murray, I. About, P. Lumley, et al., Odontoblast morphology and dentin repair, J. Dent. 31 (2003)
75 82.
[94] A.J. Smith, H. Lescof, Introduction and regulation of crown dentino-genesis: embryonic events as a tem-
plate for dental tissue repair? Crit. Rev. Oral Bio. Med. 12 (2001) 425 437.
[95] A.J. Smith, N. Cassidy, H. Perry, Reactionary dentinogenesis, Int. J. Dev. Biol. 39 (1995) 273 280.
[96] I.O. Smith, X.H. Liu, L.A. Smith, et al., Nanostructured polymer scaffolds for tissue engineering and
regenerative medicine, Wiley Interdisc. Rev. Nanomed. Nanobiotechnol. 1 (2009) 226 236.
[97] X. Yang, F. Yang, X.F. Walboomers, et al., The performance of dental pulp stem cells on nanofibrous
PCL/gelatin/nHA scaffolds, J. Biomed. Mater. Res. A 93 (2010) 247 257.
[98] J. Wang, X. Liu, J. Xiaobing, et al., The odontogenic differentiation of human dental pulp cells on nano-
fibrous poly( L -lacticacid) scaffolds in vitro and in vivo, Acta Biomater. 6 (2010) 3856 3863.
[99] M.J. Gupta, P.X. Ma, Nanofibrous scaffolds for dental and craniofacial applications, J. Dent. Res. 91
(2012) 227 234.
Search WWH ::




Custom Search