Biomedical Engineering Reference
In-Depth Information
[50] H.F. Chen, Z.Y. Tang, J. Liu, K. Sun, S.R. Chang, M.C. Peters, et al., Acellular synthesis of a human
enamel-like microstructure, Adv. Mater. 18 (2006) 1846 1851.
[51] Y. Fujishiro, A. Fujimoto, T. Sato, A. Okuwaki, Coating of hydroxyapatite on titanium plates using
thermal-dissociation of calcium-EDTA chelate complex in phosphate solutions under hydrothermal
conditions, J. Colloid Interface Sci. 173 (1995) 119
127.
[52] W. Suchannek, M. Yoshimura, Processing and properties of hydroxyapatite-based biomaterials for use as
hard tissue replacement implants, J. Mater. Res. 13 (1998) 94 117.
[53] M. Cao, Y. Wang, C. Guo, Y. Qi, C. Hu, Preparation of ultrahigh-aspect-ratio hydroxyapatite nanofibers
in reverse micelles under hydrothermal conditions, Langmuir 20 (2004) 4784.
[54] L. Li, C. Mao, J. Wang, X. Xu, H. Pan, Y. Deng, et al., Bio-inspired enamel repair via Glu-directed
assembly of apatite nanoparticle: an approach to biomaterials with optimal characteristic, Adv. Mater. 23
(2011) 4695 4701.
[55] M. Hannig, C. Hannig, Nanomaterials in preventive dentistry, Nat. Nanotechnol. 5 (2010) 565 569.
[56] K. Onuma, K. Yamagishi, A. Oyane, Nucleation and growth of hydroxyapatite nanocrystals for non-
destructive repair of early caries lesions, J. Cryst. Growth 282 (2005) 199 207.
[57] Y. Yamagishi, K. Onuma, T. Suzuki, F. Okada, J. Tagami, M. Otsuki, et al., A synthetic enamel for
rapid tooth repair, Nature 433 (2005) 819.
[58] K.L. Lv, J.X. Zhang, X.C. Meng, X.Y. Li, Remineralization effect of the nano-HA toothpaste on artificial
caries, Key Eng. Mater. 330 332 (2007) 267 270.
[59] M.Y. Kim, H.K. Kwon, C.H. Choi, B.I. Kim, Combined effects of nano-hydroxyapatite and NaF on
remineralization of early caries lesion, Key Eng. Mater. 330 332 (2007) 1347 1350.
[60] N. Roveri, E. Battistella, I. Foltran, E. Foresti, M. Iafisco, M. Lelli, et al., Synthetic biomimetic carbonate-
hydroxyapatite nanocrystals for enamel remineralization, Adv. Mater. Res. 47 50 (2008) 821 824.
[61] N. Roveri, E. Battistella, C.L. Bianchi, I. Foltran, E. Foresti, M. Lafisco, et al., Surface enamel reminera-
lization: biomimetic apatite nanocrystals and fluoride ions different effects, J. Nanomater.
(2009)
10.1155/2009/746383.
[62] L. Li, H.H. Pan, J.H. Tao, X.R. Xu, C.Y. Mao, X.H. Gu, et al., Repair of enamel by using hydroxyapatite
nanoparticles as the building blocks, J. Mater. Chem. 18 (2008) 4079
4084.
[63] P. Tschoppe, D.L. Zandim, P. Martus, A.M. Kielbassa, Enamel and dentine remineralization by nano-
hydroxyapatite toothpastes, J. Dent. 3 (2011) 430
437.
[64] S.B. Huang, S.S. Gao, H.Y. Yu, Effect of nano-hydroxyapatite concentration on remineralization of
initial enamel lesion in vitro, Biomed. Mater. 4 (2009) 034104.
[65] S. Huang, S. Gao, L. Cheng, H. Yu, Remineralization potential of nano-hydroxyapatite on initial enamel
lesions: an in vitro study, Caries Res. 45 (2011) 460 468.
[66] S. Huang, S. Gao, L. Cheng, H. Yu, Combined effects of nano-hydroxyapatite and Galla chinensis on
remineralization of initial enamel lesion in vitro, J. Dent. 38 (2010) 811 819.
[67] G. Balasundaram, M. Sato, T.J. Webster, Using hydroxyapatite nanoparticles and decreased crystallinity
to promote osteoblast adhesion similar to functionalizing with RGD, Biomaterials 27 (2006) 2798 2805.
[68] Q. Hu, Z. Tan, Y. Liu, J. Tao, Y. Cai, M. Zhang, et al., Effect of crystallinity of calcium phosphate
nanoparticles on adhesion, proliferation, and differentiation of bone marrow mesenchymal stem cells,
J. Mater. Chem. 17 (2007) 4690 4698.
[69] S. Mai, Y.K. Kim, M. Toledano, L. Breschi, J.Q. Ling, D.H. Pashley, et al., Phosphoric acid esters
cannot replace polyvinylphosphonic acid as phosphoprotein analogs in biomimetic remineralization of
resin-bonded dentin, Dent. Mater. 25 (2009) 1230 1239.
[70] A.W. Xu, Y.R. Ma, H. Colfen, Biomimetic mineralization, J. Mater. Chem. 17 (2007) 415 449.
Search WWH ::




Custom Search