Biomedical Engineering Reference
In-Depth Information
[51] S. Kobayashi, W. Kawai, Development of carbon nanofiber reinforced hydroxyapatite with enhanced
mechanical properties, Compos. Part A 38 (2007) 114 123.
[52] Y. Chen, T.H. Zhang, C.H. Gan, G. Yu, Wear studies of hydroxyapatite composite coating reinforced by
carbon nanotubes, Carbon 45 (2007) 998 1004.
[53] H. Dai, Carbon nanotubes: synthesis integration and properties, Acc. Chem. Res. 35 (2002) 1035
1044.
[54] N.M. Rodriguez, A review of catalytically grown carbon nanofibers, J. Mater. Res. 8 (1993)
3233 3250.
[55] S.K. Nataraj, K.S. Yang, T.M. Aminabhavi, Polyacrylonitrile-based nanofibers—a state-of-the-art
review, Prog. Polym. Sci. 37 (2012) 487 513.
[56] R. Andrews, D. Jacques, D. Qian, T. Rantell, Multiwall carbon nanotubes: synthesis and application,
Acc. Chem. Res. 35 (2002) 1008 1017.
[57] A. Agiral, L. Lefferts, J.G.E. (Han) Gardeniers, In situ CVD of carbon nanofibers in a microreactor,
Catal. Today 150 (2010) 128 132.
[58] S. Mori, M. Suzuki, Catalyst-free low-temperature growth of carbon nanofibers by microwave plasma-
enhanced CVD, Thin Solid Films 517 (2009) 4264 4267.
[59] D.H. Reneker, A.L. Yarin, Electrospinning jets and polymer nanofibers, Polymer 49 (2008) 2387 2425.
[60] N. Bhardwaj, S.C. Kundu, Electrospinning: a fascinating fiber fabrication technique, Biotechnol. Adv.
28 (2010) 325 347.
[61] Z. Zhou, C. Lai, L. Zhang, Y. Qian, H. Hou, D.H. Reneker, et al., Development of carbon nanofibers
from aligned electrospun polyacrylonitrile nanofiber bundles and characterization of their microstructural
electrical and mechanical properties, Polymer 50 (2009) 2999 3006.
[62] J. Liu, Z.R. Yue, H. Fong, Continuous nanoscale carbon fibers with superior mechanical strength, Small
5 (2009) 536 542.
[63] W.H. Suh, K.S. Suslick, G.D. Stucky, Y.H. Suh, Nanotechnology, nanotoxicology and neuroscience,
Prog. Neurobiol. 87 (2008) 133 170.
[64] D. Cui, F. Tian, C.S. Ozkan, M. Wang, H. Gao, Effect of single wall carbon nanotubes on human
HEK293 cells, Toxicol. Lett. 155 (2005) 73 85.
[65] M.A. Correa-Duarte, N. Wagner, J. Rojas-Chapana, C. Morsczeck, M. Thie, M. Giersig, Fabrication and
biocompatibility of carbon nanotube-based 3D networks as scaffolds for cell seeding and growth, Nano
Lett. 4 (2004) 2233
2236.
[66] T. Gabay, E. Jakobs, E. Ben-Jacob, Y. Hanein, Engineered self-organization of neural networks using
carbon nanotube clusters, Phys. A: Stat. Mech. Appl. 350 (2005) 611 621.
[67] A.A. Shvedova, V. Castranova, E.R. Kisin, D. Schwegler-Berry, A.R. Murray, V.Z. Gandelsman, et al.,
Exposure to carbon nanotube material: assessment of nanotube cytotoxicity using human keratinocyte
cells, J. Toxicol. Environ. Health Part A 66 (2003) 1909 1926.
[68] H. Hu, Y. Ni, V. Montana, R.C. Haddon, V. Parpura, Chemically functionalized carbon nanotubes as
substrates for neuronal growth, Nano Lett. 4 (2004) 507 511.
[69] S. Hirano, S. Kanno, A. Furuyama, Multi-walled carbon nanotubes injure the plasma membrane of
macrophages, Toxicol. Appl. Pharmacol. 232 (2008) 244 251.
[70] Y.B. Zhang, Y. Xu, Z.G. Li, T. Chen, S.M. Lantz, P.C. Howard, et al., Mechanistic toxicity evaluation
of uncoated and PEGylated single-walled carbon nanotubes in neuronal PC12 cells, ACS Nano 5 (2011)
7020 7033.
[71] K. Kostarelos, The long and short of carbon nanotube toxicity, Nat. Biotechnol. 26 (2008) 774 776.
[72] R. Singh, D. Pantarotto, L. Lacerda, G. Pastorin, C. Klumpp, M. Prato, et al., Tissue biodistribution and
blood clearance rates of intravenously administered carbon nanotube radiotracers, PNAS 103 (2006)
3357 3362.
Search WWH ::




Custom Search