Biomedical Engineering Reference
In-Depth Information
[10] S. Fiorito, M. Monthioux, R. Psaila, P. Pierimarchi, M. Zonfrillo, E. D'Emilia, et al., Evidence for
electro-chemical interactions between multi-walled carbon nanotubes and human macrophages, Carbon
47 (2009) 2789 2804.
[11]
J. Du, C. Ge, Y. Liu, R. Bai, D. Li, Y. Yang, et al., The interaction of serum proteins with carbon nano-
tubes depend on the physicochemical properties of nanotubes, J. Nanosci. Nanotechnol. 11 (2011)
10102
10110.
[12] K. Sahithi, M. Swetha, K. Ramasamy, N. Srinivasan, N. Selvamurugan, Polymeric composites containing
carbon nanotubes for bone tissue engineering, Int. J. Biolog. Macromole. 46 (2010) 281 283.
[13] T.J. Webster, M.C. Waid, J.L. McKenzie, R.L. Price, J.U. Ejiofor, Nano-biotechnology: carbon nano-
fibres as improved neural and orthopaedic implants, Nanotechnology 15 (2004) 48 54.
[14] K.A. Worsley, I. Kalinina, E. Bekyarova, R.C. Haddon, Functionalization and dissolution of nitric acid
treated single-walled carbon nanotubes, J. Am. Chem. Soc. 131 (2009) 18153 18158.
[15] W.H. Suh, K.S. Suslick, G.D. Stucky, Y.H. Suh, Nanotechnology nanotoxicology and neuroscience,
Prog. Neurobiol. 87 (2009) 133 170.
[16] O. Vittorio, V. Raffa, A. Cuschieri, Influence of purity and surface oxidation on cytotoxicity of multiwalled
carbon nanotubes with human neuroblastoma cells, Nanomed. Nanotechnol. Med. 5 (2009) 424 431.
[17] B.I. Kharisov, O.V. Kharissova, H.L. Gutierrez, U.O. M ´ ndez, Recent advances on the soluble carbon
nanotubes, Ind. Eng. Chem. Res. 48 (2009) 572 590.
[18] K.A. Wepasnick, B.A. Smith, K.E. Schrote, H.K. Wilson, S.R. Diegelmann, D.H. Fairbrother, Surface
and structural characterization of multi-walled carbon nanotubes following different oxidative treatments,
Carbon 49 (2011) 24 36.
[19] R. Cancedda, P. Giannoni, M. Mastrogiacomo, A tissue engineering approach to bone repair in large
animal models and in clinical practice, Biomaterials 28 (2007) 4240 4250.
[20] J.N. Coleman, U. Khan, W.J. Blau, Y.K. Gun'ko, Small but strong: a review of the mechanical proper-
ties of carbon nanotube-polymer composites, Carbon 44 (2006) 1624 1652.
[21] B. Zhao, H. Hu, S.K. Mandal, R.C. Haddon, A. Bone Mimic, Based on the self-assembly of hydroxyapa-
tite on chemically functionalized single-walled carbon nanotubes, Chem. Mater. 17 (2005) 3235 3241.
[22] D. Lahiri, F. Rouzaud, S. Namin, A.K. Keshri, J.J. Vald´s, L. Kos, et al., Carbon nanotube reinforced
polylactide-caprolactone copolymer: mechanical strengthening and interaction with human osteoblasts
in vitro, Appl. Mater. Interfaces 1 (2009) 2470
2476.
[23] M. Mattioli-Belmonte, G. Vozzi, Y. Whulanza, M. Seggiani, V. Fantauzzi, G. Orsini, et al., Composites
for bone tissue engineering scaffolds, Mater. Sci. Eng. 32 (2012) 152 159.
[24] L. Pan, X. Pei, R. He, Q. Wan, J. Wang, Multiwall carbon nanotubes/polycaprolactone composites for
bone tissue engineering application, Colloids Surf., B 93 (2012) 226 234.
[25] X. Shi, B. Sitharaman, Q.P. Pham, F. Liang, K. Wu, W.E. Billups, et al., Fabrication of porous ultra-
short single-walled carbon nanotube nanocomposite scaffolds for bone tissue engineering, Biomaterials
28 (2007) 4078 4090.
[26] B. Sitharaman, X. Shi, X.F. Walboomers, H. Liao, V. Cuijpers, L.J. Wilson, et al., In vivo biocompatibil-
ity of ultra-short single-walled carbon nanotube/biodegradable polymer nanocomposites for bone tissue
engineering, Bone 43 (2008) 362 370.
[27] C. Lin, Y. Wang, Y. Lai, W. Yang, F. Jiao, H. Zhang, et al., Incorporation of carboxylation multiwalled
carbon nanotubes into biodegradable poly(lactic-co-glycolic acid) for bone tissue engineering, Colloids
Surf. B 83 (2011) 367 375.
[28] M. Kalbacova, M. Kalbac, L. Dunsch, U. Hempel, Influence of single-walled carbon nanotube films on
metabolic activity and adherence of human osteoblasts, Carbon 45 (2007) 2266 2272.
[29] X. Li, H. Gao, M. Uo, Y. Sato, T. Akasaka, S. Abe, et al., Maturation of osteoblast-like SaoS2 induced
by carbon nanotubes, Biomed. Mater. 4 (2009) 015005.
Search WWH ::




Custom Search