Biomedical Engineering Reference
In-Depth Information
[46] Y. Ozaki, et al., Comprehensive analysis of chemotactic factors for bone marrow mesenchymal stem
cells, Stem Cells Dev. 16 (2007) 119 129.
[47] S.A. Kuznetsov, A.J. Friedenstein, P.G. Robey, Factors required for bone marrow stromal fibroblast
colony formation in vitro, Br. J. Haematol. 97 (1997) 561 570.
[48] J. Fiedler, F. Leucht, J. Waltenberger, C. Dehio, R.E. Brenner, VEGF-A and PIGF-1 stimulate chemotac-
tic migration of human mesenchymal progenitor cells, Biochem. Biophys. Res. Commun. 334 (2005)
561 568.
[49] H. Jian, et al., Smad3-dependent nuclear translocation of beta-catenin is required for TGF-beta1-induced
proliferation of bone marrow-derived adult human mesenchymal stem cells, Genes Dev. 20 (2006)
666 674.
[50] I. Catelas, J.F. Dwyer, S. Helgerson, Controlled release of bioactive transforming growth factor beta-1
from fibrin gels in vitro, Tissue Eng. Part C Methods 14 (2008) 119 128.
[51] C. Wong, E. Inman, R. Spaethe, S. Helgerson, Fibrin-based biomaterials to deliver human growth
factors, Thromb. Haemost. 89 (2003) 573 582.
[52] M.W. Mosesson, Fibrinogen and fibrin structure and functions, J. Thromb. Haemost. 3 (2005)
1894 1904.
[53] G. Rock, D. Neurath, M. Lu, A. Alharbi, M. Freedman, The contribution of platelets in the production
of cryoprecipitates for use in a fibrin glue, Vox Sang. 91 (2006) 252 255.
[54] I. Catelas, et al., Human mesenchymal stem cell proliferation and osteogenic differentiation in fibrin
gels in vitro, Tissue Eng. 12 (2006) 2385 2396.
[55] T. Schildhauer, D. Seybold, J. Gebmann, G. Muhr, M. Koller, Fixation of porous calcium phosphate
with expanded bone marrow cells using an autologous plasma clot, Mater. Sci. Eng. Technol.
(2007)
1012 1014.
[56] J.A. Hobkirk, Progress in implant research, Int. Dent. J. 33 (1983) 341 349.
[57] E. Eisenbarth, J. Meyle, W. Nachtigall, J. Breme, Influence of the surface structure of titanium materials
on the adhesion of fibroblasts, Biomaterials 17 (1996) 1399 1403.
[58] A. Cohen, P. Liu-Synder, D. Storey, T. Webster, Decreased fibroblast and increased osteoblast functions
on ionic plasma deposited nanostructured Ti coatings, (2007) 385
390.
[59] D. Miller, R. Vance, A. Thapa, T. Webster, K. Haberstroch, Comparaison of fibroblast and vascular cell
adhesion to nanostructured poly(lactic co glycolic acid) films, Appl. Bion. Biochem. (2005) 1
7.
[60] R.M. Streicher, M. Schmidt, S. Fiorito, Nanosurfaces and nanostructures for artificial orthopedic
implants, Nanomedicine 2 (2007) 861 874.
[61] S. Puckett, R. Pareta, T.J. Webster, Nano rough micron patterned titanium for directing osteoblast mor-
phology and adhesion, Int. J. Nanomed. 3 (2008) 229 241.
[62] C. Yao, E.B. Slamovich, T.J. Webster, Enhanced osteoblast functions on anodized titanium with
nanotube-like structures, J. Biomed. Mater. Res. A 85 (2008) 157 166.
[63] K.-H. Frosch, et al., Growth behavior, matrix production, and gene expression of human osteoblasts in
defined cylindrical titanium channels, J. Biomed. Mater. Res. A 68 (2004) 325 334.
[64] S.H. Oh, R.R. Fin˜nes, C. Daraio, L.-H. Chen, S. Jin, Growth of nano-scale hydroxyapatite using chemi-
cally treated titanium oxide nanotubes, Biomaterials 26 (2005) 4938 4943.
[65] P.I. Br˚nemark, et al., Osseointegrated titanium fixtures in the treatment of edentulousness, Biomaterials
4 (1983) 25 28.
[66] K. Kubo, et al., Cellular behavior on TiO 2 nanonodular structures in a micro-to-nanoscale hierarchy
model, Biomaterials 30 (2009) 5319 5329.
[67] R.Z. LeGeros, R.G. Craig, Strategies to affect bone remodeling: osteointegration, J. Bone Miner. Res. 8
(Suppl. 2) (1993) S583 S596.
[68] R.M. Pilliar, Cementless implant fixation—toward improved reliability, Orthop. Clin. N. Am. 36 (2005)
113 119.
Search WWH ::




Custom Search