Biomedical Engineering Reference
In-Depth Information
[2] L. Le Gu ´ hennec, A. Soueidan, P. Layrolle, Y. Amouriq, Surface treatments of titanium dental implants
for rapid osseointegration, Dent. Mater. 23 (2007) 844 854.
[3] S. Lavenus, J.-C. Ricquier, G. Louarn, P. Layrolle, Cell
interaction with nanopatterned surface of
implants, Nanomedicine 5 (2010) 937 947.
[4] S. Lavenus, G. Louarn, P. Layrolle, Nanotechnology and dental implants, Int. J. Biomater. 2010 (2010)
915327.
[5] R.G.T. Geesink, Osteoconductive coatings for total joint arthroplasty, Clin. Orthop. Relat. Res.
(2002)
53 65.
[6] S. Leeuwenburgh, et al., Osteoclastic resorption of biomimetic calcium phosphate coatings in vitro,
J. Biomed. Mater. Res. 56 (2001) 208 215.
[7] R.G. Geesink, K. de Groot, C.P. Klein, Chemical implant fixation using hydroxyl-apatite coatings. The
development of a human total hip prosthesis for chemical fixation to bone using hydroxyl-apatite coat-
ings on titanium substrates, Clin. Orthop. Relat. Res. (1987) 147 170.
[8] M.M. Shalabi, J.G.C. Wolke, J.A. Jansen, The effects of implant surface roughness and surgical tech-
nique on implant fixation in an in vitro model, Clin. Oral Implants Res. 17 (2006) 172 178.
[9] M. Esposito, J.M. Hirsch, U. Lekholm, P. Thomsen, Biological factors contributing to failures of
osseointegrated oral
implants. (I). Success criteria and epidemiology, Eur. J. Oral Sci. 106 (1998)
527 551.
[10] M. Esposito, J.M. Hirsch, U. Lekholm, P. Thomsen, Biological factors contributing to failures of
osseointegrated oral implants. (II). Etiopathogenesis, Eur. J. Oral Sci. 106 (1998) 721 764.
[11] W.-D. M¨eller, et al., Evaluation of the interface between bone and titanium surfaces being blasted by
aluminium oxide or bioceramic particles, Clin. Oral Implants Res. 14 (2003) 349 356.
[12] L. Le Guehennec, et al., Osteoblastic cell behaviour on different
titanium implant surfaces, Acta
Biomater. 4 (2008) 535 543.
[13] A. Citeau, et al., In vitro biological effects of titanium rough surface obtained by calcium phosphate grid
blasting, Biomaterials 26 (2005) 157 165.
[14] S. Oh, et al., Stem cell fate dictated solely by altered nanotube dimension, Proc. Natl. Acad. Sci.
U. S. A. 106 (2009) 2130
2135.
[15] L. Zhang, Y. Han, Effect of nanostructured titanium on anodization growth of self-organized TiO 2 nano-
tubes, Nanotechnology 21 (2010) 55602.
[16] K. Shankar, et al., Highly-ordered TiO 2 nanotube arrays up to 220 μ m in length: use in water photoelec-
trolysis and dye-sensitized solar cells, Nanotechnology (2007).
[17] S.H. Kang, H.S. Kim, J.-Y. Kim, Y.-E. Sung, An investigation on electron behavior employing
vertically-aligned TiO 2 nanotube electrodes for dye-sensitized solar cells, Nanotechnology 20 (2009)
355307.
[18] K.S. Brammer, et al., Improved bone-forming functionality on diameter-controlled TiO(2) nanotube
surface, Acta Biomater. 5 (2009) 3215 3223.
[19] N.C. Geurs, R.L. Jeffcoat, E.A. McGlumphy, M.S. Reddy, M.K. Jeffcoat, Influence of implant geometry
and surface characteristics on progressive osseointegration, Int. J. Oral Maxillofac. Implants 17 (2002)
811 815.
[20] J.E. Davies, Understanding peri-implant endosseous healing, J. Dent. Educ. 67 (2003) 932 949.
[21] L. Le Guehennec, et al., Histomorphometric analysis of the osseointegration of four different implant
surfaces in the femoral epiphyses of rabbits, Clin. Oral Implants Res. 19 (2008) 1103 1110.
[22] M.A. Lopez-Heredia, P. Weiss, P. Layrolle, An electrodeposition method of calcium phosphate coatings
on titanium alloy, J. Mater. Sci. Mater. Med. 18 (2007) 381 390.
[23] R.Z. LeGeros, Properties of osteoconductive biomaterials: calcium phosphates, Clin. Orthop. Relat. Res.
(2002) 81 98.
Search WWH ::




Custom Search