Biomedical Engineering Reference
In-Depth Information
[66] S.R. Macneill, C.M. Cobb, J.W. Rapley, A.G. Glaros, P. Spencer, In vivo comparison of synthetic
osseous graft materials. A preliminary study, J. Clin. Periodontol. 26 (1999) 239 245.
[67] B.C. Vasconcelos Gurgel, P.F. Goncalves, S.P. Pimentel, G.M. Ambrosano, F.H. Nociti Jr.,
E.A. Sallum, et al., Platelet-rich plasma may not provide any additional effect when associated with
guided bone regeneration around dental
implants in dogs, Clin. Oral
Implants. Res. 18 (2007)
654.
[68] W.V. Giannobile, R.A. Hernandez, R.D. Finkelman, S. Ryan, C.P. Kiritsy, M. D'andrea, et al., Comparative
effects of platelet-derived growth factor-BB and insulin-like growth factor-I, individually and in combina-
tion, on periodontal regeneration in Macaca fascicularis, J. Periodontal Res. 31 (1996) 301 312.
[69] W.V. Giannobile, Periodontal tissue engineering by growth factors, Bone 19 (1996) S23 S37.
[70] H.L. Wang, J. Cooke, Periodontal
649
regeneration techniques for
treatment of periodontal diseases,
Dent. Clin. North Am. 49 (2005) 637 659, vii.
[71] R.L. Van Swol, R. Ellinger, J. Pfeifer, N.E. Barton, N. Blumenthal, Collagen membrane barrier therapy
to guide regeneration in Class II furcations in humans, J. Periodontol. 64 (1993) 622 629.
[72] A.M. Polson, G.L. Southard, R.L. Dunn, A.P. Polson, G.L. Yewey, D.D. Swanbom, et al., Periodontal
healing after guided tissue regeneration with Atrisorb barriers in beagle dogs, Int. J. Periodontics
Restorative Dent. 15 (1995) 574 589.
[73] A.M. Polson, S. Garrett, N.H. Stoller, G. Greenstein, A.P. Polson, C.Q. Harrold, et al., Guided tissue
regeneration in human furcation defects after using a biodegradable barrier: a multi-center feasibility
study, J. Periodontol. 66 (1995) 377 385.
[74] A.M. Polson, G.L. Southard, R.L. Dunn, A.P. Polson, J.R. Billen, L.L. Laster, Initial study of guided
tissue regeneration in Class II furcation defects after use of a biodegradable barrier, Int. J. Periodontics
Restorative Dent. 15 (1995) 42 55.
[75] G. Balasundaram, M. Sato, T.J. Webster, Using hydroxyapatite nanoparticles and decreased crystallinity
to promote osteoblast adhesion similar to functionalizing with RGD, Biomaterials 27 (2006) 2798 2805.
[76] T.J. Webster, C. Ergun, R.H. Doremus, R.W. Siegel, R. Bizios, Enhanced osteoclast-like cell functions
on nanophase ceramics, Biomaterials 22 (2001) 1327 1333.
[77] C.A. Mcculloch, E. Nemeth, B. Lowenberg, A.H. Melcher, Paravascular cells in endosteal spaces of
alveolar bone contribute to periodontal ligament cell populations, Anat. Rec. 219 (1987) 233
242.
[78] S.M. Carvalho, A.A.R. Oliveira, L.M. Andrade, M.F. Leite, M.M. Pereira., The effect of bioactive glass
nanoparticles on the behavior of human periodontal ligament cells, Dent. Mater. 27 (2011) 42 43.
[79] S.M. Carvalho, A.A.R. Oliveira, C.A. Jardim, C.B.S. Melo, D.A. Gomes, M. De F´tima Leite, et al.,
Characterization and induction of cementoblast cell proliferation by bioactive glass nanoparticles,
J. Tissue Eng. Regen. Med. (2011).
[80] M. Peter, N.S. Binulal, S.V. Nair, N. Selvamurugan, H. Tamura, R. Jayakumar, Novel biodegradable
chitosan—gelatin/nano-bioactive glass ceramic composite scaffolds for alveolar bone tissue engineering,
Chem. Eng. J. 158 (2010) 353 361.
[81] Oliveira A.A.R., V. Ciminelli, Dantas M.S.S., H.S. Mansur, M.M. Pereira, Acid character control
of bioactive glass/polyvinyl alcohol hybrid foams produced by sol-gel, J. Sol-Gel Sci. Technol. (2008)
doi: 10.1007/s10971-008-1777-1.
[82] H.S. Costa, E.F. Stancioli, M.M. Pereira, R.L. Orefice, H.S. Mansur, Synthesis, neutralization and
blocking procedures of organic/inorganic hybrid scaffolds for bone tissue engineering applications,
J. Mater. Sci.: Mater. Med. 20 (2009) 529 535.
[83] T. Niemela, H. Niiranen, M. Kellomaki, Self-reinforced composites of bioabsorbable polymer and bio-
active glass with different bioactive glass contents. Part II: in vitro degradation, Acta Biomater. 4 (2008)
156 164.
Search WWH ::




Custom Search