Biomedical Engineering Reference
In-Depth Information
[23] M. Hosokawa, K. Nogi, M. Naito, T. Yokoyama, Nanoparticle Technology Handbook, Elsevier, ISBN
9780444531223, 2007.
[24] K.S. Rao, K. El-Hami, T. Kodaji, K. Matsushige, A novel method for synthesis of silica nanoparticles,
J. Colloid Interface Sci. 289 (2005) 125 131.
[25] X.-D. Wang, Z.-X. Shen, T. Sang, X.-B. Cheng, M.-F. Li, L.-Y. Chen, et al., Preparation of spherical
silica particles by St¨ber process with high concentration of tetra-ethyl-orthosilicate, J. Colloid Interface
Sci. 341 (2010) 23 29.
[26] J.S. Park, H.J. Hah, S.M. Koo, Y.S. Leea, Effect of alcohol chain length on particle growth in a mixed
solvent system, J. Ceram. Proc. Res. 7 (1) (2006) 83 89.
[27] M.M. Pereira, L.L. Hench, Mechanisms of hydroxyapatite formation on porous gel-silica substrates,
J. Sol-Gel Sci. Technol. 7 (1996) 59 68.
[28] T. Kokubo, H. Kushitani, C. Ohtsuki, S. Sakka, Chemical reaction of bioactive glass and glass-ceramics
with a simulated body fluid, J. Mater. Sci.: Mater. Med. 3 (1992) 79 83.
[29] P. Ducheyne, P. Bianco, S. Radin, E. Schepers, Bioactive materials: mechanisms and bioengineering
considerations, in: Bone Bonding, Reed Healthcare Communications, 1992, pp. 1 12.
[30] P. Li, C. Ohtsuki, T. Kokubo, K. Nakanishi, N. Soga, K. De Groot, The role of hydrated silica, titania,
and alumina in inducing apatite on implants, J. Biomed. Mater. Res. 28 (1994) 7 15.
[31] H. Lu, S.R. Pollack, P. Ducheyne, Particle electrophoresis of 45S5 bioactive glass particles in simulated
physiological electrolyte solutions, Proc. Surf. Biomater. 24 (1995).
[32] K. Yamashita, N. Oikawa, T. Umegaki, Acceleration and deceleration of bone-like crystal growth on
ceramic hydroxyapatite by electric poling, Chem. Mater. 8 (1996) 2697 2700.
[33] M. Ueshima, S. Nakamura, K. Yamashita, Huge, millicoulomb charge storage in ceramic hydroxyapatite
by bimodal electric polarization, Adv. Mater. 14 (2002) 591 594.
[34] M.M. Pereira, A.E. Clark, L.L. Hench, Homogeneity of bioactive sol-gel derived glasses in the system
SiO2-CaO-P2O5, J. Mater. Synth. Proc. 2 (3) (1994) 189 195.
[35] M.B. Coelho, M.M. Pereira, Sol-gel synthesis of bioactive glass scaffolds for tissue engineering: effect
of surfactant
type and concentration, J. Biomed. Mater. Res. Part B: Appl. Biomater. 75B (2005)
456.
[36] T. Pauloin, M. Dutot, J.M. Warnet, P. Rat, In vitro modulation of preservative toxicity: high molecular
weight hyaluronan decreases apoptosis and oxidative stress induced by benzalkonium chloride, Eur. J.
Pharm. Sci. 34 (2008) 263 273.
[37] M.S. Tung, F.C. Eichmiller, Dental applications of amorphous calcium phosphates, J. Clin. Dent.
10 (1999) 1 6.
[38] A. Doostmohammadi, A. Monshi, R. Salehi, M.H. Fathi, Z. Golnyia, A.U. Daniels, Bioactive glass
nanoparticles with negative zeta potential, Ceram. Int. 37 (2011) 2311 2316.
[39] T.J. Webster, R.W. Siegel, R. Bizios, Osteoblast adhesion on nanophase ceramics, Biomaterials
20 (1999) 1221 1227.
[40] E. Palin, H. Liu, T.J. Webster, Mimicking the nanofeatures of bone increases bone-forming cell adhesion
and proliferation, Nanotechnology 16 (2005) 1828 1835.
[41] O.D. Schneider, S. Loher, T.J. Brunner, L. Uebersax, M. Simonet, R.N. Grass, et al., Cotton wool-like
nanocomposite biomaterials prepared by electrospinning: in vitro bioactivity and osteogenic differentia-
tion of human mesenchymal stem cells, J. Biomed. Mater. Res. Part B Appl. Biomater. 84 (2008)
350 362.
[42] P. Stoor, E. Soderling, J.I. Salonen, Antibacterial effects of a bioactive glass paste on oral micro-
organisms, Acta Odontol. Scand. 56 (1998) 161 165.
[43] T. Waltimo, T.J. Brunner, M. Vollenweider, W.J. Stark, M. Zehnder, Antimicrobial effect of nanometric
bioactive glass 45S5, J. Dent. Res. 86 (2007) 754 757.
451
Search WWH ::




Custom Search