Biomedical Engineering Reference
In-Depth Information
References
[1] L.L. Hench, Bioceramics and the origin of life, J. Biomed. Mater. Res. 23 (1989) 685 703.
[2] V. Mourino, A.R. Boccaccini, Bone tissue engineering therapeutics: controlled drug delivery in three-
dimensional scaffolds, J. R. Soc. Interface 7 (2010) 209 227.
[3] F. Balas, M. Kawashita, T. Nakamura, T. Kokubo, Formation of bone-like apatite on organic polymers
treated with a silane-coupling agent and a titania solution, Biomaterials 27 (2006) 1704 1710.
[4] L.L. Hench, The story of Bioglass, J. Mater. Sci. Mater. Med. 17 (2006) 967 978.
[5] T.J. Webster, C. Ergun, R.H. Doremus, R.W. Siegel, R. Bizios, Enhanced functions of osteoblasts on
nanophase ceramics, Biomaterials 21 (2000) 1803 1810.
[6] T.J. Webster, C. Ergun, R.H. Doremus, R.W. Siegel, R. Bizios, Specific proteins mediate enhanced
osteoblast adhesion on nanophase ceramics, J. Biomed. Mater. Res. 51 (2000) 475 483.
[7] T.A. Ostomel, Q. Shi, C.K. Tsung, H. Liang, G.D. Stucky, Spherical bioactive glass with enhanced rates
of hydroxyapatite deposition and hemostatic activity, Small 2 (2006) 1261 1265.
[8] M.M. Pereira, J.R. Jones, R.L. Orefice, L.L. Hench, Preparation of bioactive glass-polyvinyl alcohol
hybrid foams by the sol-gel method, J. Mater. Sci. Mater. Med. 16 (2005) 1045 1050.
[9] T. Kokubo, H.M. Kim, M. Kawashita, Novel bioactive materials with different mechanical properties,
Biomaterials 24 (2003) 2161 2175.
[10] T.J. Brunner, R.N. Grass, W.J. Stark, Glass and bioglass nanopowders by flame synthesis, Chem.
Commun. (Camb.) (2006) 1384 1386.
[11] G.H. Bogush, C.F. Zukoski, The kinetics of the precipitation of uniform silica particles through the
hydrolysis and condensation of silicon alkoxides, J. Colloid Interface Sci. 142 (1991) 1 18.
[12] D.L. Green, J.S. Lin, Y.F. Lam, M.Z. Hu, D.W. Schaefer, M.T. Harris, Size, volume fraction, and
nucleation of Stober silica nanoparticles, J. Colloid Interface Sci. 266 (2003) 346 358.
[13] W. Xia, J. Chang, Preparation and characterization of nano-bioactive-glasses (NBG) by a quick alkali-
mediated sol-gel method, Mater. Lett. 61 (2007) 3251 3253.
[14] Z. Hong, R.L. Reis, J.F. Mano, Preparation and in vitro characterization of novel bioactive glass ceramic
nanoparticles, J. Biomed. Mater. Res. A 88 (2009) 304 313.
[15] W. St¨ber, A. Fink, E. Bohn, Controlled growth of monodisperse silica spheres in the micron size range,
J. Colloid Interface Sci. 26 (1968) 62 69.
[16] A.A.R. Oliveira. New method to obtain bioactive glass nanoparticles, biodegradable polyurethanes and
their composites for biomedical applications. Tese de doutorado. Universidade Federal de Minas Gerais,
Belo Horizonte, Minas Gerais, Brasil (2011). English version avaliable online at http://www.ppgem.eng.
ufmg.br/tese_detalhes.php?aluno=1016.
[17] X. Chen, B. Lei, Y. Wang, N. Zhao, Morphological control and in vitro bioactivity of nanoscale
bioactive glasses, J. Non-Cryst. Solids 355 (2009) 791 796.
[18] S. Labbaf, O. Tsigkou, K.H. Muller, M.M. Stevens, A.E. Porter, J.R. Jones, Spherical bioactive glass
particles and their interaction with human mesenchymal stem cells in vitro, Biomaterials 32 (2011)
1010 1018.
[19] A.M. El-Kady, A.F. Ali, M.M. Farag, Development, characterization, and in vitro bioactivity studies of
sol-gel bioactive glass/poly( L -lactide) nanocomposite scaffolds, Mater. Sci. Eng. C 30 (2010) 120
131.
[20] C.J. Brinker, G.W. Scherer, The Sol-Gel Science the Physics and Chemistry of Sol-Gel Processing,
Academic Press, ISBN 0-12-134970-5, 1990.
[21] Z. Hong, R.L. Reis, J.F. Mano, Preparation and in vitro characterization of scaffolds of poly( L -lactic
acid) containing bioactive glass ceramic nanoparticles, Acta Biomater. 4 (2008) 1297 1306.
[22] Z. Hong, E.G. Merino, R.L. Reis, J.F. Mano, Novel rice-shaped bioactive ceramic nanoparticles,
Adv. Eng. Mater. 11 (2009) 25 29.
Search WWH ::




Custom Search