Biomedical Engineering Reference
In-Depth Information
[17] R. Tenne, Inorganic nanotubes and fullerene-like materials, Nat. Nanotechnol. 1 (2006) 103 111.
[18] H.J. Fan, U. Goesele, M. Zacharias, Formation of nanotubes and hollow nanoparticles based on
Kirkendall and diffusion processes: a review, Small 3 (2007) 1660 1671.
[19] A. Enyashin, S. Gemming, G. Seifert, Nanosized allotropes of molybdenum disulfide, Eur. Phys. J. 149
(2007) 103
125.
[20] C.N.R. Rao, A. Govindaraj, Synthesis of inorganic nanotubes, Adv. Mater. 21 (2009) 4208
4233.
[21] M.N. Tahir, A. Yella, J.K. Sahoo, H. Annal-Therese, N. Zink, W. Tremel, Synthesis and functionaliza-
tion of chalcogenide nanotubes, Phys. Status Solidi B 247 (2010) 2338 2363.
[22] Y. Feldman, G.L. Frey, M. Homyonfer, V. Lyakhovitskaya, L. Margulis, H. Cohen, et al., Bulk synthesis
of inorganic fullerene-like MS 2 (M 5 Mo, W) from the respective trioxides and the reaction mechanism,
J. Am. Chem. Soc. 118 (1996) 5362 5367.
[23] Y. Feldman, A. Zak, R. Popovitz-Biro, R. Tenne, New reactor for production of tungsten disulfide
onion-like (inorganic fullerene-like) nanoparticles, Solid State Sci. 2 (2000) 663 672.
[24] R. Rosentsveig, A. Margolin, Y. Feldman, R. Popovitz-Biro, R. Tenne, WS 2 nanotube bundles and foils,
Chem. Mater. 14 (2002) 471 473.
[25] A. Zak, L. Sallacan-Ecker, A. Margolin, M. Genut, R. Tenne, Insight into the growth mechanism of
WS 2 nanotubes in the scaled-up fluidized bed reactor, Nano 4 (2009) 91 98.
[26] A. Zak, Y. Feldman, V. Alperovich, R. Rosentsveig, R. Tenne, Growth mechanism of MoS 2 fullerene-
like nanoparticles by the gas phase synthesis, J. Am. Chem. Soc. 122 (2000) 11108 11116.
[27] R. Rosentsveig, A. Margolin, A. Gorodnev, R. Popovitz-Biro, Y. Feldman, L. Rapoport, et al., Synthesis of
fullerene-like MoS 2 nanoparticles and their tribological behavior, J. Mater. Chem. 19 (2009) 4368 4374.
[28] R. Rosentsveig, R. Tenne, A. Gorodnev, N. Feuerstein, H. Friedman, N. Fleischer, et al., Fullerene-like
MoS 2 nanoparticles and their tribological behavior, Tribol. Lett. 36 (2009) 175 182.
[29] L. Yadgarov, R. Rosentsveig, G. Leitus, A. Albu-Yaron, A. Moshkovith, V. Perfilyev, et al., Controlled
doping of MS 2 (M 5 W, Mo) nanotubes and fullerene-like nanoparticles, Angew. Chem. 51 (2012)
1148 1151.
[30] L. Rapoport, A. Moshkovith, V. Perfiliev, A. Laikhtman, I. Lapsker, L. Yadgarov, et al., High lubricity
of Re-doped fullerene-like MoS 2 nanoparticles, Tribol. Lett. 45 (2012) 257 264.
[31] P.D. Fleischauer, J.R. Lince, A comparison of oxidation and oxygen substitution in MoS 2 solid film
lubricants, Tribol. Int. 32 (1999) 627
636.
[32] M. Chhowalla, G.A.J. Amaratunga, Thin films of fullerene-like MoS 2 nanoparticles with ultra-low
friction and wear, Nature 407 (2000) 164 167.
[33] A.A. Voevodin, J.S. Zabinski, Supertough wear-resistant coatings with “chameleon” surface adaptation,
Thin Solid Films 370 (2000) 223 231.
[34] I.L. Singer, S. Fayeulle, P.D. Ehni, Wear behavior of triode-sputtered MoS 2 coatings in dry sliding
contact with steel and ceramics, Wear 195 (1996) 7 20.
[35] W.X. Chen, Z.D. Xu, R. Tenne, R. Rosenstveig, W.L. Chen, H.Y. Gan, et al., Wear and friction of
Ni P electroless composite coating including inorganic fullerene-like WS 2 nanoparticles, Adv. Eng.
Mater. 4 (2002) 686 690.
[36] A. Katz, M. Redlich, L. Rapoport, H.D. Wagner, R. Tenne, Self-lubricating coatings containing
fullerene-like WS 2 nanoparticles for orthodontic wires and other possible medical applications, Tribol.
Lett. 21 (2006) 135 139.
[37] H. Friedman, O. Eidelman, Y. Feldman, A. Moshkovith, V. Perfiliev, L. Rapoport, et al., Fabrication of
self-lubricating cobalt coatings on metal surfaces, Nanotechnology 18 (2007) 1 8.
[38] A.R. Adini, Y. Feldman, S.R. Cohen, L. Rapoport, A. Moshkovith, M. Redlich, et al., Alleviating
incidental and fatigue-related failure of NiTi root canal files by self-lubricating coatings, J. Mater. Res.
26 (2011) 1234 1242.
Search WWH ::




Custom Search