Biomedical Engineering Reference
In-Depth Information
[35] K.K. Miura, et al., Anticariogenic effect of fluoride-releasing elastomers in orthodontic patients, Braz.
Oral. Res. 21 (3) (2007) 228 233.
[36] G.T. Kluemper, et al., Efficacy of a wax containing benzocaine in the relief of oral mucosal pain caused
by orthodontic appliances, Am. J. Orthod. Dentofacial Orthop. 122 (4) (2002) 359 365.
[37] S.I. Gunes, S.C. Jana, Shape memory polymers and their nanocomposites: a review of science and tech-
nology of new multifunctional materials, J. Nanosci. Nanotechnol. 8 (4) (2008) 1616
1637.
[38] M.A. Stuart, W.T. Huck, J. Genzer, M. M¨ ller, C. Ober, M. Stamm, et al., Emerging applications of
stimuli-responsive polymer materials, Nat. Mater. 9 (2010) 101 113.
[39] Q. Meng, J. Hu, A review of shape memory polymer composites and blends, Compos. A Appl. Sci.
Manuf. 40 (11) (2009) 1661 1672.
[40] J. Leng, X. Lan, Y. Liu, S. Du, et al., Shape-memory polymers and their composites: stimulus methods
and applications, Prog. Mater. Sci. 56 (7) (2011) 1077 1135.
[41] E.E. Nuxoll, R.A. Siegel, BioMEMS devices for drug delivery, IEEE Eng. Med. Biol. Mag. 28 (1)
(2009) 31 39.
[42] B. Xu, BioMEMS enabled drug delivery, Nanomedicine 1 (2) (2005) 176 177.
[43] P.L. Gourley, Brief overview of BioMicroNano technologies, Biotechnol. Prog. 21 (1) (2005) 2 10.
[44] Z. Davidovitch, M.D. Finkelson, S. Steigman, J.L. Shanfeld, P.C. Montgomery, E. Korostoff, et al.,
Electric currents, bone remodeling, and orthodontic tooth movement. II. Increase in rate of tooth move-
ment and periodontal cyclic nucleotide levels by combined force and electric current, Am. J. Orthod. 77
(1) (1980) 33 47.
[45] Z. Davidovitch, M.D. Finkelson, S. Steigman, J.L. Shanfeld, P.C. Montgomery, E. Korostoff, et al.,
Electric currents, bone remodeling, and orthodontic tooth movement. I. The effect of electric currents on
periodontal cyclic nucleotides, Am. J. Orthod. 77 (1) (1980) 14 32.
[46] J. Kolahi, M. Abrishami, Z. Davidovitch, Microfabricated biocatalytic fuel cells: a new approach to
accelerating the orthodontic tooth movement, Med. Hypotheses 73 (3) (2009) 340 341.
[47] R.A. Freitas Jr., Nanodentistry, J. Am. Dent. Assoc. 131 (11) (2000) 1559 1565.
[48] R.A.J. Freitas, Nanomedicine. Vol. 1. Basic Capabilities, vol. 2011, Landes Bioscience, Georgetown,
TX, 1999.
[49] M. Schatzle, R. M¨nnchen, M. Zwahlen, N.P. Lang, et al., Survival and failure rates of orthodontic tem-
porary anchorage devices: a systematic review, Clin. Oral. Implants Res. 20 (12) (2009) 1351
1359.
[50] S. Miyawaki, I. Koyama, M. Inoue, K. Mishima, T. Sugahara, T. Takano-Yamamoto, et al., Factors asso-
ciated with the stability of titanium screws placed in the posterior region for orthodontic anchorage, Am.
J. Orthod. Dentofacial Orthop. 124 (4) (2003) 373 378.
[51] S. Kuroda, Y. Sugawara, T. Deguchi, H.M. Kyung, T. Takano-Yamamoto, et al., Clinical use of minis-
crew implants as orthodontic anchorage: success rates and postoperative discomfort, Am. J. Orthod.
Dentofacial Orthop. 131 (1) (2007) 9 15.
Search WWH ::




Custom Search