Biomedical Engineering Reference
In-Depth Information
[86] T. Waltimo, T.J. Brunner, M. Vollenweider, W.J. Stark, M. Zehnder, Antimicrobial effect of nano-
metric bioactive glass 45S5, J. Dent. Res. 86 (2007) 754 757.
[87] N. Roveri, E. Battistello, I. Foltran, E. Foresti, M. Iafisco, M. Lelli, et al., Synthetic biomimetic
carbonate-hydroxyapatite nanocrystals for enamel remineralization, Adv. Mater. Res. 47 50 (2008)
821
824.
[88] K.J. Cross, N.L. Huq, E.C. Reynolds, Casein phosphopeptides in oral health chemistry and clinical
applications, Curr. Pharm. Des. 13 (2007) 793 800.
[89] S.C. Venegas, J.M. Palacios, M.C. Apella, P.J. Morando, M.A. Blesa, Calcium modulates interactions
between bacteria and hydroxyapatite, J. Dent. Res. 85 (2006) 1124 1128.
[90] C. Rahiotis, G. Vougiouklakis, G. Eliades, Characterization of oral films formed in the presence of a
CPP-ACP agent: an in situ study, J. Dent. 36 (2008) 272 280.
[91] E.C. Reynolds, F. Cai, P. Shen, G.D. Walker, Retention in plaque and remineralization of enamel
lesions by various forms of calcium in a mouthrinse or sugar-free chewing gum, J. Dent. Res. 82
(2003) 206 211.
[92] E.C. Reynolds, Calcium phosphate-based remineralization systems: scientific evidence?, Aus. Dent. J.
53 (2008) 268 273.
[93] R.K. Rose, Binding characteristics of Streptococcus mutans for calcium and casein phosphopeptide,
Caries Res. 34 (2000) 427 431.
[94] R.K. Rose, Effects of an anticariogenic casein phosphopeptide on calcium diffusion in streptococcal
model dental plaques, Arch. Oral Biol. 45 (2000) 569 575.
[95] R.P. Allaker, C.W.I. Douglas, Novel anti-microbial therapies for dental plaque-related diseases, Int.
J. Antimicrob. Agents 33 (2009) 8 13.
[96] A.J. MacRobert, S.G. Bown, D. Phillips, What are the ideal photoproperties for a sensitizer? Ciba
Found. Symp. 146 (1989) 4 12.
[97] T.C. Pagonis, J. Chen, C.R. Fontana, H. Devalapally, K. Ruggiero, X. Song, et al., Nanoparticle-based
endodontic antimicrobial photodynamic therapy, J. Endod. 36 (2010) 322 328.
[98] S. Wood, D. Metcalf, D. Devine, C. Robinson, Erythrosine is a potential photosensitizer for the photo-
dynamic therapy of oral plaque biofilms, J. Antimicrob. Chemother. 57 (2006) 680
684.
[99] R.N. Seetharam, K.R. Sridhar, Nanotoxicity:
threat posed by nanoparticles, Curr. Sci. 93 (2006)
770.
[100] W.I. Hagens, A.G. Oomen, W.H. de Jong, F.R. Cassee, A.J. Sips, What do we (need to) know about
the kinetic properties of nanoparticles in the body? Reg. Toxicol. Pharmacol. 49 (2007) 217 229.
[101] A. Panacek, M. Kolar, R. Vecerova, R. Prucek, J. Soukupova, V. Krystof, et al., Antifungal activity of
silver nanoparticles against Candida spp, Biomaterials 30 (2009) 6333 6340.
[102] A. Nel, T. Xia, I. Madler, N. Li, Toxic potential of materials at the nanolevel, Science 311 (2006)
622 627.
[103] M.L. Luo, J.Q. Zhao, W. Tang, S. Pu, Hydrophilic modification of poly (ether sulfone) ultrafiltration
membrane surface by self-assembly of TiO 2 nanoparticles, Appl. Surf. Sci. 49 (2005) 76 84.
[104] P.A. McCarron, R.F. Donnelly, W. Marouf, D.E. Calvert, Anti-adherent and antifungal activities of
surfactant-coated poly (ethylcyanoacrylate) nanoparticles, Int. J. Pharm. 340 (2007) 182 190.
[105] S. Nair, A. Sasidharan, V.V.D. Rani, D. Menon, S. Nair, K. Manzoor, et al., Role of size scale of ZnO
nanoparticles and microparticles on toxicity toward bacteria and osteoblast cancer cells, J. Mater. Sci.
Mater. Med. 20 (2009) S235 S241.
769
Search WWH ::




Custom Search