Biomedical Engineering Reference
In-Depth Information
[65] K.M. Reddy, K. Feris, J. Bell, D.G. Wingett, C. Hanley, A. Punnoose, Selective toxicity of zinc oxide
nanoparticles to prokaryotic and eukaryotic systems, Appl. Phys. Lett. 90 (2007) 213902.
[66] L.L. Zhang, Y.H. Jiang, Y.L. Ding, M. Povey, D. York, Investigation into the antibacterial behaviour of
suspensions of ZnO nanoparticles (ZnO nanofluids), J. Nanopart. Res. 9 (2007) 479 489.
[67]
J. Sawai, Quantitative evaluation of antibacterial activities of metallic oxide powders (ZnO, MgO and
CaO) by conductometric assay, J. Microbiol. Methods 54 (2003) 177
182.
[68] N. Jones, B. Ray, K.T. Ranjit, A.C. Manna, Antibacterial activity of ZnO nanoparticle suspensions on a
broad spectrum of microorganisms, FEMS Microbiol. Lett. 279 (2008) 71 76.
[69] Y. Liu, L. He, A. Mustapha, H. Li, Z.Q. Hu, M. Lin, Antibacterial activities of zinc oxide nanoparticles
against Escherichia coli O157:H7, J. Appl. Microbiol. 107 (2009) 1193 1201.
[70] D.M. Blake, P.-C. Maness, Z. Huang, E.J. Wolfrum, W.A. Jacoby, J. Huang, Application of the photoca-
talytic chemistry of titanium dioxide to disinfection and the killing of cancer cells, Sep. Purif. Methods
28 (1999) 1 50.
[71] A.S. Yazdi, G. Guarda, N. Riteau, S.K. Drexler, A. Tardivel, I. Couillin, et al., Nanoparticles activate
the NLR pyrin domain containing 3 (NIrp3) inflammasome and cause pulmonary inflammation through
release of IL-1 α and IL-1 β , Proc. Natl. Acad. Sci. U. S. A. 107 (2010) 19449 19454.
[72] P.C. Maness, S. Smolinski, D.M. Blake, Z. Huang, E.J. Wolfrum, W.A. Jacoby, Bactericidal activity of
photocatalytic TiO 2
reaction:
toward an understanding of
its killing mechanism, Appl. Envirol.
Microbiol. 65 (1999) 4094 4098.
[73] Y.H. Tsuang, J.S. Sun, Y.C. Huang, C.H. Lu, W.H.S. Chang, C.C. Wang, Studies of photokilling of
bacteria using titanium dioxide nanoparticles, Artif. Organs 32 (2008) 167 174.
[74] S.J. Ahn, S.J. Lee, J.K. Kook, B.S. Lim, Experimental antimicrobial orthodontic adhesives using nanofil-
lers and silver nanoparticles, Dent. Mater. 25 (2009) 206 213.
[75] B. Aydin Sevnic, L. Hanley, Antibacterial activity of dental composites containing zinc oxide nanoparticles,
J. Biomed. Mater. Res. B Appl. Biomater. 94 (2010) 22 31.
[76] A. Almaguer-Flores, L.A. Ximenez-Fyvie, S.E. Rodil, Oral bacterial adhesion on amorphous carbon and
titanium films: effect of surface roughness and culture media, J. Biomed. Mater. Res. B Appl. Biomater.
92 (2010) 196
204.
[77] N. Beyth, I. Yudovin-Farber, R. Bahir, A.J. Domb, E.I. Weiss, Antibacterial activity of dental compo-
sites containing quaternary ammonium polyethylenimine nanoparticles against Streptococcus mutans,
Biomaterials 27 (2006) 3995 4002.
[78] I. Yudovin-Farber, N. Beyth, A. Nyska, E.I. Weiss, J. Golenser, A.J. Domb, Surface characterization and
biocompatibility of restorative resin containing nanoparticles, Biomacromolecules 9 (2008) 3044 3050.
[79] Y. Wu, W. Yang, C. Wang, J. Hu, S. Fu, Chitosan nanoparticles as a novel delivery system for ammo-
nium glycyrrhizinate, Int. J. Pharm. 295 (2005) 235 245.
[80] L.M. Lin, J.E. Skribner, P. Gaengler, Factors associated with endodontic failures, J. Endod. 18 (1992)
625 627.
[81] A. Kishen, Z. Shi, A. Shrestha, K.G. Neoh, An investigation on the antibacterial and antibiofilm efficacy
of cationic nanoparticulates for root canal infection, J. Endod. 34 (2008) 1515 1520.
[82] K.W. Stephen, Dentrifices: recent clinical findings and implications for use, Int. Dent. J. 43 (1993)
549 553.
[83] R.M. Gaikwaad, I. Sokolov, Silica nanoparticles to polish tooth surfaces for caries prevention, J. Dent.
Res. 87 (2008) 980 983.
[84] B.G. Cousins, H.E. Allison, P.J. Doherty, C. Edwards, M.J. Garvey, D.S. Martin, et al., Effects of a
nanoparticulate silica substrate on cell attachment of Candida albicans, J. Appl. Microbiol. 102 (2007)
757 765.
[85] E.M. Hetrick, J.H. Shin, H.S. Paul, M.H. Schoenfisch, Anti-biofilm efficacy of nitric oxide-releasing
silica nanoparticles, Biomaterials 30 (2009) 2782 2789.
Search WWH ::




Custom Search