Biomedical Engineering Reference
In-Depth Information
[44] K. Kawahara, K. Tsuruda, M. Morishita, M. Uchida, Antibacterial effect of silver-zeolite on oral bacteria
under anaerobic conditions, Dent. Mater. 16 (2000) 452 455.
[45] T. Matsuura, Y. Abe, Y. Sato, K. Okamoto, M. Ueshige, Y. Akagawa, Prolonged antimicrobial effect of
tissue conditioners containing silver-zeolite, J. Dent. 25 (1997) 373 377.
[46] M. Morishita, M. Miyagi, Y. Yamasaki, K. Tsuruda, K. Kawahara, Y. Iwamoto, Pilot study on the effect
of a mouthrinse containing silver zeolite on plaque formation, J. Clin. Dent. 9 (1998) 94
96.
[47] P. Li, J. Li, C. Wu, Q. Wu, J. Li, Synergistic antibacterial effects of β -lactam antibiotic combined with
silver nanoparticles, Nanotechnology 16 (2005) 1912 1917.
[48] M. Rai, A. Yadav, A. Gade, Silver nanoparticles as a new generation of antimicrobials, Biotechnol. Adv.
27 (2009) 76 83.
[49] V. Sambhy, M.M. MacBride, B.R. Peterson, A. Sen, Silver bromide nanoparticle/polymer composites:
dual action tuneable antimicrobial materials, J. Am. Chem. Soc. 128 (2006) 9798 9808.
[50] Q.L. Feng, J. Wu, G.Q. Chen, F.Z. Cui, T.M. Kim, J.O. Kim, A mechanistic study of the antibacterial
effect of Ag 1 ions on Escherichia coli and Staphylococcus aureus, J. Biomed. Mater. Res. 52 (2000)
662 668.
[51] M. Yamanaka, K. Hara, J. Kudo, Bactericidal actions of a silver ion solution on Escherichia coli, studied
by energy-filtering transmission electron microscopy and proteomic analysis, Appl. Environ. Microbiol.
71 (2005) 7589 7593.
[52] P.D. Bragg, D.J. Rainnie, The effect of Ag 1 ions on the respiratory chain of E. coli, Can. J. Microbiol.
20 (1974) 883 889.
[53] K.Y. Yoon, J.H. Byeon, J.H. Park, J. Hwang, et al., Susceptibility constants of Escherichia coli and
Bacillus subtilis to silver and copper nanoparticles, Sci. Tot. Environ. 373 (2007) 572 575.
[54] J.P. Ruparelia, A.K. Chatterje, S.P. Duttagupta, S. Mukherji, Strain specificity in antimicrobial activity
of silver and copper nanoparticles, Acta Biomater. 4 (2008) 707 716.
[55] T.J. Beveridge, R.G.E. Murray, Sites of metal deposition in the cell wall of Bacillus subtilis,
J. Bacteriol. 141 (1980) 876 878.
[56] S.J. Stohs, D. Bagchi, Oxidative mechanisms in the toxicity of metal ions, Free Rad. Biol. Med. 18
(1995) 321 336.
[57] C. Lin, Y. Yeh, C. Yang, C. Chen, G. Chen, C.C. Chen, et al., Selective binding of mannose-
encapsulated gold nanoparticles to type I pili
in Escherichia coli, J. Am. Chem. Soc. 13 (2002)
155 168.
[58] D.N. Williams, S.H. Ehrman, T.R. Pulliman Holoman, Evaluation of the microbial growth response to
inorganic nanoparticles, J. Nanobiotech. 4 (2006) 3.
[59] P.K. Stoimenov, R.L. Klinger, G.L. Marchin, K.J. Klabunde, Metal oxide nanoparticles as bactericidal
agents, Langmuir 18 (2002) 6679 6686.
[60] H.L. Karlsson, P. Cronholm, J. Gustafsson, L. Moller, Copper oxide nanoparticles are highly toxic: a
comparison between metal oxide nanoparticles and carbon nanotubes, Chem. Res. Toxicol. 21 (2008)
1726 1732.
[61] R.J. Cava, Structural chemistry and the local charge picture of copper oxide superconductors, Science
247 (1990) 656 662.
[62] J.M. Tranquada, B.J. Sternlieb, J.D. Axe, Y. Nakamura, S. Uchida, Evidence for stripe correlations of
spins and holes in copper oxide superconductors, Nature 375 (1995) 561.
[63] Z. Ahmad, M.A. Vargas-Reus, R. Bakhshi, F. Ryan, G.G. Ren, F. Oktar, et al., Antimicrobial properties
of electrically formed elastomeric polyurethane-copper oxide nanocomposites for medical and dental
applications, Methods Enzymol. 509 (2012) 87 99.
[64] R. Brayner, R. Ferrari-Iliou, N. Brivois, S. Djediat, M.F. Benedetti, F. Fievet, Toxicological impact studies
based on Escherichia coli bacteria in ultrafine ZnO nanoparticles colloidal medium, Nano Lett. 6 (2006)
866 870.
Search WWH ::




Custom Search