Biomedical Engineering Reference
In-Depth Information
[18] O. Choi, C.P. Yu, G. Esteban Fernandez, Z. Hu, Interactions of nanosilver with Escherichia coli cells in
planktonic and biofilm cultures, Water Res. 44 (20) (2010) 6095.
[19] D.R. Monteiro, S. Silva, M. Negri, L.F. Gorup, E.R. de Camargo, R. Oliveira, et al., Silver nanoparticles:
influence of stabilizing agent and diameter on antifungal activity against Candida albicans and Candida
glabrata biofilms, Lett. Appl. Microbiol. 54 (5) (2012) 383.
[20] K. Kalishwaralal, S. BarathManiKanth, S.R. Pandian, V. Deepak, S. Gurunathan, Silver nanoparticles
impede the biofilm formation by Pseudomonas aeruginosa and Staphylococcus epidermidis, colloids
surf, Colloids Surf. B Biointerfaces 79 (2) (2010) 340.
[21] D.R. Monteiro, L.F. Gorup, S. Silva, M. Negri, E.R. de Camargo, R. Oliveira, et al., Silver colloidal
nanoparticles: antifungal effect against adhered cells and biofilms of Candida albicans and Candida
glabrata, Biofouling 27 (7) (2011) 711.
[22] L.F. Gorup, E. Longo, E.R. Leite, E.R. Camargo, Moderating effect of ammonia on particle growth and
stability of quasi-monodisperse silver nanoparticles synthesized by the Turkevich method, J. Colloid
Interface Sci. 360 (2) (2011) 355.
[23] J. Fabrega, J.C. Renshaw, J.R. Lead, Interactions of silver nanoparticles with Pseudomonas putida
biofilms, Environ. Sci. Technol. 43 (23) (2009) 9004.
[24] T.O. Peulen, K.J. Wilkinson, Diffusion of nanoparticles in a biofilm, Environ. Sci. Technol. 45 (8)
(2011) 3367.
[25] J. Turkevich, J. Hillier, A study of the nucleation and growth processes in the synthesis of colloidal
gold, Discuss. Faraday Soc. 11 (1951) 55.
[26] G.M. Whitford, J.L. Wasdin, T.E. Schafer, S.M. Adair, Plaque fluoride concentrations are dependent on
plaque calcium concentrations, Caries Res. 36 (4) (2002) 256.
[27] M.A. Buzalaf, J.P. Pessan, H.M. Honorio, J.M. ten Cate, Mechanisms of action of fluoride for caries
control, Monogr. Oral Sci. 22 (2011) 97.
[28] J.M. ten Cate, J.M. Larsen, E.I.F. Pearce, O. Fejerskov, Chemical interactions between the tooth and the
oral fluids, in: O. Fejerskov, E.A.M. Kidd (Eds.), Dental Caries: The Disease and Its Clinical
Management, Blackwell Munksgaard, Oxford, 2008, pp. 209 231.
[29] R.P. Shellis, R.M. Duckworth, Studies on the cariostatic mechanisms of fluoride, Int. Dent. J. 44
(3 Suppl. 1) (1994) 263.
[30] M.E. Barbour, R.P. Shellis, D.M. Parker, G.C. Allen, M. Addy, Inhibition of hydroxyapatite dissolution
by whole casein: the effects of pH, protein concentration, calcium, and ionic strength, Eur. J. Oral Sci.
116 (5) (2008) 473.
[31] M.E. Barbour, R.P. Shellis, D.M. Parker, G.C. Allen, M. Addy, An investigation of some food-approved
polymers as agents to inhibit hydroxyapatite dissolution, Eur. J. Oral Sci. 113 (6) (2005) 457.
[32] M.M. Manarelli, A.E. Vieira, A.A. Matheus, K.T. Sassaki, A.C. Delbem, Effect of mouth rinses with
fluoride and trimetaphosphate on enamel erosion: an in vitro study, Caries Res. 45 (6) (2011) 506.
[33] M.J. Moretto, A.C. Magalhaes, K.T. Sassaki, A.C. Delbem, C.C. Martinhon, Effect of different fluoride
concentrations of experimental dentifrices on enamel erosion and abrasion, Caries Res. 44 (2) (2010) 135.
[34] E.M. Takeshita, L.P. Castro, K.T. Sassaki, A.C. Delbem, In vitro evaluation of dentifrice with low fluo-
ride content supplemented with trimetaphosphate, Caries Res. 43 (1) (2009) 50.
[35] E.M. Takeshita, Evaluation of sodium trimetaphosphate (TMP) effect on biolfim and enamel de- and
remineralization: in vitro and in situ study, Thesis, S˜o Paulo State University, Ara¸atuba, 2010.
[36] E.M. Takeshita, R.A. Exterkate, A.C. Delbem, J.M. ten Cate, Evaluation of different fluoride concentra-
tions supplemented with trimetaphosphate on enamel de- and remineralization in vitro, Caries Res. 45
(5) (2011) 494.
[37] X. Deng, Q. Luan, W. Chen, Y. Wang, M. Wu, H. Zhang, et al., Nanosized zinc oxide particles induce
neural stem cell apoptosis, Nanotechnology 20 (11) (2009) 115101.
Search WWH ::




Custom Search