Biomedical Engineering Reference
In-Depth Information
driving us to this pathway [63,67,68] . Possibly bionanomaterials of silver phosphates are a promis-
ing candidate for different dental materials purposes, like in titanium implants coatings, bone
fillings, dental varnish or sealants, toothpastes and even in dental floss covering, since they would
combine the antimicrobial action of silver and the bioactivity of phosphates [63] .
From now, the door for future perspectives is open to welcome the readers into the “nanoworld”
to give their appropriate judgments in regard to the disadvantages and the real benefits of the use
of nanostructured biomaterials in the dental field.
References
[1] G.A. Ozin, A.C. Arsenault, Nanochemistry. A chemical approach to nanomaterials, R. Soc. Chem.
(2005).
[2] D.A. McQuarrie, J.D. Simon, Physical Chemistry. A Molecular Approach, University Science topics,
1997.
[3] I. Levine, Quantum Chemistry, sixth ed., Prentice Hall, 2008.
[4] T. Pellegrino, S. Kudera, T. Liedl, A.M. Javier, L. Manna, W.J. Parak, On the development of colloidal
nanoparticles towards multifunctional structures and their possible use for biological applications, Small
1 (1) (2005) 48.
[5] C.A. Mirkin, The beginning of a small revolution, Small 1 (1) (2005) 14.
[6] A.Z. Moshfegh, Nanoparticle catalysts, J. Phys. D. Appl. Phys. 42 (23) (2009).
[7] V. Zijnge, M.B. van Leeuwen, J.E. Degener, F. Abbas, T. Thurnheer, R. Gmur, et al., Oral biofilm archi-
tecture on natural teeth, PLoS One 5 (2) (2010) e9321.
[8] H.C. Flemming, T.R. Neu, D.J. Wozniak, The EPS matrix: the “house of biofilm cells”, J. Bacteriol. 189
(22) (2007) 7945.
[9] S. Filoche, L. Wong, C.H. Sissons, Oral biofilms: emerging concepts in microbial ecology, J. Dent. Res.
89 (1) (2010) 8.
[10] R.P. Allaker, The use of nanoparticles to control oral biofilm formation, J. Dent. Res. 89 (11) (2010)
1175.
[11] C.A. Fux, J.W. Costerton, P.S. Stewart, P. Stoodley, Survival strategies of infectious biofilms, Trends
Microbiol. 13 (1) (2005) 34.
[12] T.R. Zuroff, H. Bernstein, J. Lloyd-Randolfi, L. Jimenez-Taracido, P.S. Stewart, R.P. Carlson,
Robustness analysis of culturing perturbations on Escherichia coli colony biofilm beta-lactam and
aminoglycoside antibiotic tolerance, BMC Microbiol. 10 (2010) 185.
[13] S.A. Rani, B. Pitts, H. Beyenal, R.A. Veluchamy, Z. Lewandowski, W.M. Davison, et al., Spatial pat-
terns of DNA replication, protein synthesis, and oxygen concentration within bacterial biofilms reveal
diverse physiological states, J. Bacteriol. 189 (11) (2007) 4223.
[14] J.P. Folsom, L. Richards, B. Pitts, F. Roe, G.D. Ehrlich, A. Parker, et al., Physiology of Pseudomonas
aeruginosa in biofilms as revealed by transcriptome analysis, BMC Microbiol. 10 (2010) 294.
[15] J. Kim, J.S. Hahn, M.J. Franklin, P.S. Stewart, J. Yoon, Tolerance of dormant and active cells in Pseudomonas
aeruginosa PA01 biofilm to antimicrobial agents, J. Antimicrob. Chemother. 63 (1) (2009) 129.
[16] K. Chaloupka, Y. Malam, A.M. Seifalian, Nanosilver as a new generation of nanoproduct in biomedical
applications, Trends Biotechnol. 28 (11) (2010) 580.
[17] D.R. Monteiro, L.F. Gorup, A.S. Takamiya, A.C. Ruvollo-Filho, E.R. de Camargo, D.B. Barbosa, The
growing importance of materials that prevent microbial adhesion: antimicrobial effect of medical devices
containing silver, Int. J. Antimicrob. Agents 34 (2) (2009) 103.
Search WWH ::




Custom Search