Biomedical Engineering Reference
In-Depth Information
[89] J.H. Min, H.K. Kwon, B.I. Kim, The addition of nano-sized hydroxyapatite to a sports drink to inhibit
dental erosion—in vitro study using bovine enamel, J. Dent. 39 (2011) 629 635.
[90] D.J. Manton, F. Cai, Y. Yuan, G.D. Walker, N.J. Cochrane, C. Reynolds, et al., Effect of casein
phosphopeptide amorphous calcium phosphate added to acidic beverages on enamel erosion in vitro,
Aust. Dent. J. 55 (2010) 275
279.
[91] L. Sun, L.C. Chow, Preparation and properties of nano-sized calcium fluoride for dental applications,
Dent. Mater. 24 (2008) 111 116.
[92] L. Rimondini, B. Palazzo, M. Iafisco, L. Canegallo, F. Denarosi, M. Merlo, et al., The remineralizing
effect of carbonate hydroxyapatite nanocrystals on dentin, Mater. Sci. Forum (2007) 602 605.
[93] G. Orsini, M. Procaccini, L. Manzoli, F. Giuliodori, A. Lorenzini, A. Putignano, A double-blind
randomized-controlled trial comparing the desensitizing efficacy of a new dentifrice containing carbon-
ate/hydroxyapatite nanocrystals and a sodium fluoride/potassium nitrate dentifrice, J. Clin. Periodontol.
37 (2010) 510 517.
[94] A. Kowalczyk, B. Botulinski, M. Jaworska, A. Kierklo, M. Pawinska, E. Dabrowska, Evaluation of the
product based on recaldent technology in the treatment of dentin hypersensitivity, Adv. Med. Sci. 51
(Suppl. 1) (2006) 40 42.
[95] C. Braunbarth, H. Franke, R. Kniep, C. Kropf, T. Poth, G. Schechner, et al., The mineralising effect of
a nanoscaled calcium phosphate protein composite (Nano s active) on dentin, VDI Berichte 1803
(2003) 283 286.
[96] S.Y. Lee, H.K. Kwon, B.I. Kim, Effect of dentinal tubule occlusion by dentifrice containing nano-
carbonate apatite, J. Oral Rehabil. 35 (2008) 847 853.
[97] A. Guentsch, K. Seidler, S. Nietzsche, A.F. Hefti, P.M. Preshaw, D.C. Watts, et al., Biomimetic miner-
alization: long-term observations in patients with dentin sensitivity, Dent. Mater. 28 (2012) 457 464.
[98] K. Yamagishi, K. Onuma, T. Suzuki, F. Okada, J. Tagami, M. Otsuki, et al., A synthetic enamel for
rapid tooth repair, Nature 433 (2005) 819.
[99] H.F. Chen, Z.Y. Tang, J. Liu, K. Sun, S.R. Chang, M.C. Peters, et al., Acellular synthesis of a human
enamel-like microstructure, Adv. Mater. 18 (2006) 1846 1851.
[100] F.C. Meldrum, H. Colfen, Controlling mineral morphologies and structures in biological and synthetic
systems, Chem. Rev. 108 (2008) 4332
4432.
[101] M. Sarikaya, C. Tamerler, A.K. Jen, K. Schulten, F. Baneyx, Molecular biomimetics: nanotechnology
through biology, Nat. Mater. 2 (2003) 577 585.
[102] A.G. Fincham, J. Moradian-Oldak, J.P. Simmer, The structural biology of the developing dental enamel
matrix, J. Struct. Biol. 126 (1999) 270 299.
[103] J. Moradian-Oldak, Amelogenins: assembly, processing and control of crystal morphology, Matrix
Biol. 20 (2001) 293 305.
[104] J. Tao, H. Pan, Y. Zeng, X. Xu, R. Tang, Roles of amorphous calcium phosphate and biological addi-
tives in the assembly of hydroxyapatite nanoparticles, J. Phys. Chem. B 111 (2007) 13410 13418.
[105] Y. Fan, Z. Sun, J. Moradian-Oldak, Controlled remineralization of enamel in the presence of amelo-
genin and fluoride, Biomaterials 30 (2009) 478 483.
[106] Y. Iijima, J. Moradian-Oldak, Control of apatite crystal growth in a fluoride containing amelogenin-
rich matrix, Biomaterials 26 (2005) 1595 1603.
[107] S. Busch, U. Schwarz, R. Kniep, Chemical and structural investigations of biomimetically grown
fluorapatite-gelatin composite aggregates, Adv. Funct. Mater. 13 (2003) 189 198.
[108] S. Busch, Regeneration of human tooth enamel, Angew. Chem. 43 (2004) 1428 1431.
[109]
J.A. Tavener, G.M. Davies, R.M. Davies, R.P. Ellwood, The prevalence and severity of fluorosis in
children who received toothpaste containing either 440 or 1,450 ppm F from the age of 12 months in
deprived and less deprived communities, Caries Res. 40 (2006) 66 72.
Search WWH ::




Custom Search