Biomedical Engineering Reference
In-Depth Information
[69] M. Gyo, T. Nikaido, K. Okada, J. Yamauchi, J. Tagami, K. Matin, Surface response of fluorine
polymer-incorporated resin composites to cariogenic biofilm adherence, Appl. Environ. Microbiol. 74
(2008) 1428 1435.
[70] M. Hannig, L. Kriener, W. Hoth-Hannig, C. Becker-Willinger, H. Schmidt, Influence of nanocomposite
surface coating on biofilm formation in situ, J. Nanosci. Nanotechnol. 7 (2007) 4642
4648.
[71] C.H. Su, A simple and cost-effective method for fabricating lotus-effect composite coatings, J. Coating
Technol. Res. 9 (2012) 135 141.
[72] D. Ebert, B. Bhushan, Durable lotus-effect surfaces with hierarchical structure using micro- and nano-
sized hydrophobic silica particles, J. Colloid Interface Sci. 368 (2012) 584 591.
[73] W. Barthlott, C. Neinhuis, The lotus effect: a self-cleaning surface based on a model taken from nature,
Tekstil 50 (2001) 461 465.
[74] R. Furstner, C. Neinhuis, W. Barthlott, The lotus effect: self-purification of microstructured surfaces,
Nachr. Aus. Der. Chem. 48 (2000) 24 28.
[75] R. Helbig, J. Nickerl, C. Neinhuis, C. Werner, Smart skin patterns protect springtails, PLoS One 6
(2011).
[76] M.Y. Kim, H.K. Kwon, C.H. Choi, B.I. Kim, Combined effects of nano-hydroxyapatite and NaF on
remineralisation of early caries lesions, Key Eng. Mater. 330 332 (2007) 1347 1350.
[77] L. Kuilong, Z. Jiuxing, M. Xiangcai, L. Xingyi, Remineralization effect of the nano-HA toothpaste on
artificial caries, Key Eng. Mater. 330 332 (2007) 267 270.
[78] B. Li, J. Wang, Z. Zhao, Y. Sui, Y. Zhang, Mineralizing of nano-hydroxyapatite powders on artificial
caries, Rare Metal Mater. Eng. 36 (Suppl. 2) (2007) 128 130.
[79] S. Huang, S. Gao, L. Cheng, H. Yu, Remineralization potential of nanohydroxyapatite on initial enamel
lesions: an in vitro study, Caries Res. 45 (2011) 460 468.
[80] D.J. Manton, G.D. Walker, F. Cai, N.J. Cochrane, P.Y. Shen, E.C. Reynolds, Remineralization of enamel
subsurface lesions in situ by the use of three commercially available sugar-free gums, Int. J. Paediatr.
Dent. 18 (2008) 284 290.
[81] M.V. Morgan, G.G. Adams, D.L. Bailey, C.E. Tsao, S.L. Fischman, E.C. Reynolds, The anticariogenic
effect of sugar-free gum containing CPP
ACP nanocomplexes on approximal caries determined using
digital bitewing radiography, Caries Res. 42 (2008) 171
184.
[82] F. Cai, D.J. Manton, P. Shen, G.D. Walker, K.J. Cross, Y. Yuan, et al., Effect of addition of citric acid
and casein phosphopeptide amorphous calcium phosphate to a sugar-free chewing gum on enamel remi-
neralization in situ, Caries Res. 41 (2007) 377 383.
[83] F. Cai, P. Shen, G.D. Walker, C. Reynolds, Y. Yuan, E.C. Reynolds, Remineralization of enamel subsur-
face lesions by chewing gum with added calcium, J. Dent. 37 (2009) 763 768.
[84] P. Shen, D.J. Manton, N.J. Cochrane, G.D. Walker, Y. Yuan, C. Reynolds, et al., Effect of added cal-
cium phosphate on enamel remineralization by fluoride in a randomized controlled in situ trial, J. Dent.
39 (2011) 518 525.
[85] Y. Shibata, L.H. He, Y. Kataoka, T. Miyazaki, M.V. Swain, Micromechanical property recovery of
human carious dentin achieved with colloidal nano-beta-tricalcium phosphate, J. Dent. Res. 87 (2008)
233 237.
[86] N. Roveri, B. Palazzo, M. Iafisco, The role of biomimetism in developing nanostructured inorganic
matrices for drug delivery, Expert Opin. Drug Deliv. 5 (2008) 861 877.
[87] N. Roveri, E. Battistello, C.L. Bianchi, I. Foltran, E. Foresti, M. Iafisco, et al., Surface enamel
remineralisation: biomimetic apatite nanocrystals and fluoride ions different effects, J. Nanomater.
(2009).
[88] H.J. Lee, J.H. Min, C.H. Choi, H.G. Kwon, B.I. Kim, Remineralization potential of sports drink contain-
ing nano-sized hydroxyapatite, Key Eng. Mater. 330 332 (2007) 275 278.
Search WWH ::




Custom Search