Biomedical Engineering Reference
In-Depth Information
Del Poeta, M., D.L. Toffaletti, T.H. Rude, S.D. Sparks, J. Heitman and J.R. Perfect.
1999. Cryptococcus neoformans differential gene expression detected in vitro
and in vivo with green fl uorescent protein. Infect. Immun . 67: 1812-1820.
Doyle, T.C., S.M. Burns and C.H. Contag. 2004. In vivo bioluminescence imaging
for integrated studies of infection. Cell. Microbiol . 6: 303-317.
Doyle, T.C., K.A. Nawotka, C.B. Kawahara, K.P. Francis and P.R. Contag. 2006a.
Visualizing fungal infections in living mice using bioluminescent pathogenic
Candida albicans strains transformed with the fi refl y luciferase gene. Microb.
Pathog . 40: 82-90.
Doyle, T.C., K.A. Nawotka, A.F. Purchio, A.R. Akin, K.P. Francis and P.R. Contag.
2006b. Expression of fi refl y luciferase in Candida albicans and its use in the
selection of stable transformants. Microb. Pathog . 40: 69-81.
Eckert, S.E. and F.A. Muhlschlegel. 2009. Promoter regulation in Candida albicans
and related species. FEMS. Yeast Res . 9: 2-15.
Enjalbert, B., D.M. MacCallum, F.C. Odds and A.J. Brown. 2007. Niche-specifi c
activation of the oxidative stress response by the pathogenic fungus Candida
albicans. Infect. Immun . 75: 2143-2151.
Enjalbert, B., A. Rachini, G. Vediyappan, D. Pietrella, R. Spaccapelo, A.
Vecchiarelli, A.J. Brown and C. d'Enfert. 2009. A multifunctional, synthetic
Gaussia princeps luciferase reporter for live imaging of Candida albicans
infections. Infect. Immun . 77: 4847-4858.
Fan, W., P.R. Kraus, M.J. Boily and J. Heitman. 2005. Cryptococcus neoformans
gene expression during murine macrophage infection. Eukaryot. Cell .
4: 1420-1433.
Fradin, C., M. Kretschmar, T. Nichterlein, C. Gaillardin, C. d'Enfert and B. Hube.
2003. Stage-specifi c gene expression of Candida albicans in human blood. Mol.
Microbiol . 47: 1523-1543.
Franz, R., S.L. Kelly, D.C. Lamb, D.E. Kelly, M. Ruhnke and J. Morschhauser. 1998.
Multiple molecular mechanisms contribute to a stepwise development of
fl uconazole resistance in clinical Candida albicans strains. Antimicrob . Agents
Chemother . 42: 3065-3072.
Galan-Diez, M., D.M. Arana, D. Serrano-Gomez, L. Kremer, J.M. Casasnovas,
M. Ortega, A. Cuesta-Dominguez, A.L. Corbi, J. Pla and E. Fernandez-Ruiz.
2010. Candida albicans {beta}-glucan exposure is controlled by the fungal
CEK1-mediated MAPK pathway modulating immune responses triggered
through Dectin-1. Infect. Immun . 78: 1426-1436.
Gaur, N.A., R. Manoharlal, P. Saini, T. Prasad, G. Mukhopadhyay, M. Hoefer,
J. Morschhauser and R. Prasad. 2005. Expression of the CDR1 effl ux pump
in clinical Candida albicans isolates is controlled by a negative regulatory
element. Biochem. Biophys. Res. Commun . 332: 206-214.
Gerami-Nejad, M., J. Berman and C.A. Gale. 2001. Cassettes for PCR-mediated
construction of green, yellow and cyan fl uorescent protein fusions in Candida
albicans . Yeast . 18: 859-864.
Harry, J.B., B.G. Oliver, J.L. Song, P.M. Silver, J.T. Little, J. Choiniere and T.C.
White. 2005. Drug-induced regulation of the MDR1 promoter in Candida
albicans. Antimicrob. Agents Chemother . 49: 2785-2792.
Search WWH ::




Custom Search