Biomedical Engineering Reference
In-Depth Information
Vargas, W.A., S. Djonovic, S.A. Sukno and C.M. Kenerley. 2008. Dimerization
controls the activity of fungal elicitors that trigger systemic resistance in
plants. J. Biol. Chem . 283: 19804-19815.
Vargas, W.A., J.C. Mandawe and C.M. Kenerley. 2009. Plant-derived sucrose is
a key element in the symbiotic association between Trichoderma virens and
maize plants. Plant Physiol . 151: 792-808.
Vargas, W.A., F.K. Crutcher and C.M. Kenerley. 2011. Functional characterization
of a plant-like sucrose transporter from the benefi cial fungus Trichoderma
virens . Regulation of the symbiotic association with plants by sucrose
metabolism inside the fungal cells. New Phytol . 189: 777-89.
Verma, M., S.K. Brar, R.D. Tyagi, R.Y. Surampalli and J.R Valéro. 2007. Antagonistic
fungi, Trichoderma spp.: panoply of biological control. Biochem. Engg. J .
37: 1-20.
Vinale, F., E.L. Ghisalberti, K. Sivasithamparam, R. Marra, A. Ritieni, R. Ferracane,
S. Woo and M. Lorito. 2009. Factors affecting the production of Trichoderma
harzianum secondary metabolites during the interaction with different plant
pathogens. Lett. Appl. Microbiol . 48: 705-711.
Vishnevetsky, J., T.L. White Jr, A.J. Palmateer, M. Flaishman, Y. Cohen, Y. Elad,
M.Velcheva, U. Hanania, N . Sahar and O. Dgani. 2011. Perl A. Improved
tolerance toward fungal diseases in transgenic Cavendish banana (Musa
spp. AAA group) cv. Grand Nain. Transgenic Res . 20: 61-72.
Viterbo, A. and I. Chet. 2006. TasHyd1, a new hydrophobin gene from the
biocontrol agent Trichoderma asperellum , is involved in plant root colonization.
Mol. Plant Pathol . 7: 249-58.
Viterbo, A., O. Ramot, L. Chemin and I. Chet. 2002. Signifi cance of lytic enzymes
from Trichoderma spp. in the biocontrol of fungal plant pathogens. Antonie
Van Leeuwenhoek. 81: 549-56.
Viterbo, A., M. Harel, B.A. Horwitz, I. Chet and P.K. Mukherjee. 2005. Trichoderma
mitogen-activated protein kinase signaling is involved in induction of plant
systemic resistance. Appl. Environ. Microbiol . 71: 6241-6246.
Viterbo, A., A. Wiest, Y. Brotman, I. Chet and C. Kenerley. 2007. The 18mer
peptaibols from Trichoderma virens elicit plant defence responses. Mol. Plant
Pathol . 8: 737-746.
Viterbo, A., U. Landau, S. Kim, L. Chernin and I. Chet. 2010. Characterization
of ACC deaminase from the biocontrol and plant growth-promoting agent
Trichoderma asperellum T203. FEMS. Microbiol. Lett . 305: 42-48.
Wiest, A., D. Grzegorski, B.W. Xu, C. Goulard, S. Rebuffat, D.J. Ebbole, B. Bodo
and C.M. Kenerley. 2002. Identifi cation of peptaibols from Trichoderma virens
and cloning of a peptaibol synthetase. J. Biol. Chem . 277: 20862-20868.
Wilhite, S.E., R.D Lumsden and D.C. Straney. 1994. Mutational analysis of
gliotoxin production by the biocontrol fungus Gliocladium virens in relation
to suppression of Pythium damping-off. Phytopathology . 84: 816.
Wilhite, S.E. and D.C. Straney. 1996. Timing of gliotoxin biosynthesis in the
fungal biological control agent Gliocladium virens ( Trichoderma virens ). Appl.
Microbiol. Biotech . 45: 513-518.
Search WWH ::




Custom Search