Biomedical Engineering Reference
In-Depth Information
condition. should. be. optimized. to. deposit. polymers. properly.. Two. photon. polymerization.
uses.photopolymerization.of.the.polymers.only.within.the.focal.volume.of.a.laser,.leading.
to.easy.construction.of.complex.3D.structures.via.computer.controls. 103 .The.research.showed.
3D.porous.structure.allows.higher.cell.speed.than.2D.substrate.and.the.cell.speed.depends.
on.the.pore.size..Mutilayered.3D.cell-laden.hydrogel.structures.(16.2.μm.per.each.layer).also.
can.be.constructed.using.a.mechanical.valve.for.dispensing.hydrogel.droplets.and.computer.
controlled.moving.stages. 104
12.6 SummaryandFutureDirections
In.this.chapter,.we.have.reviewed.some.of.the.microfabrication.technologies.available.for.
controlling.the.cellular.microenvironment..The.widespread.uses.of.lithographic.technolo-
gies. as. well. as. the. development. of. novel. biomaterials. have. improved. methods. of. con-
trolling. cell-cell,. cell-ECM,. and. cell-soluble. factor. interactions. spatially. and. temporally..
Much. insight. has. been. gained. from. these. studies. for. directing. stem. cell. fates. as. a. cell.
source. either. individually. or. incorporation. into. tissue. engineering. scaffolds. and. biomi-
. into. tissue. engineering. scaffolds. and. biomi-
metic. cell-based. devices.. However,. in. order. to. develop. sophisticated. platforms. that. can.
control.cellular.functions.more.accurately,.it.will.be.indispensable.to.design.new.materials.
and.to.incorporate.them.into.improved.fabrication.strategies..On.the.other.hand,.tissues.
are.more.complex.than.those.generated.with.the.technologies.that.have.been.developed.
so.far..Thus,.integration.of.microfabrication.technologies.to.engineer.the.complexities.of.
the.cell.microenvironment.will.yield.more.promising.systems.for.research.and.therapeutic.
purposes.
incorporation. into. tissue. engineering. scaffolds. and. biomi-
References
. 1.. Niemeyer,.C.M..and.Mirkin,.C.A.,.Nanobiotechnology,.Wiley-VCH,.2004.
. 2..Willner,.I..and.Katz,.E.,.Bioelectronics,.Wiley-VCH,.2005.
. 3.. Khademhosseini,. A.. et. al.,. Microscale. technologies. for. tissue. engineering. and. biology,. Proc.
Natl. Acad. Sci. USA .103,.2480,.2006.
. 4.. Murtuza,.B.,.Nichol,.J.W.,.and.Khademhosseini,.A.,.Micro-.and.nanoscale.control.of.the.cardiac.
stem.cell.niche.for.tissue.fabrication,. Tissue Eng. Part B Rev. .15,.443,.2009.
. 5.. Kane,. R.S.. et. al.,. Patterning. proteins. and. cells. using. soft. lithography,. Biomaterials . 20,. 2363,.
1999.
. 6.. Khetani,.S.R..and.Bhatia,.S.N.,.Engineering.tissues.for. in vitro .applications,. Curr. Opin. Biotechnol. .
17,.524,.2006.
. 7.. Liu,.W.F..and.Chen,.C.S.,.Cellular.and.multicellular.form.and.function,. Adv. Drug Deliv. Rev. .59,.
1319,.2007.
. 8.. Chung. B.G,.. Kang. L.,. and. Khademhosseini. A.,. Micro-. and. nanoscale. approaches. for. tissue.
engineering.and.drug.discovery,. Expt. Opin. Drug Dis. 2,.1653,.2007.
. 9.. Karp,. J.M.. et. al.,. Controlling. size,. shape. and. homogeneity. of. embryoid. bodies. using.
poly(ethylene.glycol).microwells,. Lab Chip .7,.786,.2007.
. 10.. Khademhosseini.A..et.al.,.Micromolding.of.photocrosslinkable.hyaluronic.acid.for.cell.encap-
sulation.and.entrapment,. J. Biomed. Mater. Res. A .79,.522,.2006.
 
Search WWH ::




Custom Search