Cryptography Reference
In-Depth Information
TABLE 10.3
c i =p i +
i
x i
x i (in binary)
p i
m i
m i
1
61585
1111000010010001
0001
1001
1000
2
245137
111011110110010001
0001
1100
1101
3
9347
10010010000011
0011
0010
0001
4
144197
100011001101000101
0101
1111
1010
5
188862
101110000110111110
1110
1010
0100
TABLE 10.4
m i =p i +
i
x i
x i (in binary)
p i
c i
c i
1
61585
1111000010010001
0001
1000
1001
2
245137
111011110110010001
0001
1101
1100
3
9347
10010010000011
0011
0001
0010
4
144197
100011001101000101
0101
1010
1111
5
188862
101110000110111110
1110
0100
1010
To decrypt the message, the recipient must retrieve the random seed that the sender chose.
Then she can compute the same sequence of squares x 1 , x 2 , x 3 , x 4 , x 5 and retrieve the plain-
text by
-ing the 4 least significant bits of the squares with the ciphertext. She does this by
computing
d ((503 + 1)/4) 6
302 (mod 502)
e ((563 + 1)/4) 6
101 (mod 562)
67738 302
u
468 (mod 503)
v 67738 101
90 (mod 563).
Finally, she obtains x 0 , the lnr of vap + ubq modulo n .
x 0
258507 (mod 283189)
For completeness, Table 10.4 shows the recovery process.
Thus, the plaintext P = 1001 1100 0010 1111 1010 is regained.
90
122
503 + 468
109
563
10.7
WEAKNESSES OF THE BLUM-GOLDWASSER PROBABILISTIC
CIPHER
This cipher can be broken if the following weaknesses are not dealt with. First, the primes
must be chosen carefully; for example, we must avoid primes p for which the factorization
Search WWH ::




Custom Search