Biomedical Engineering Reference
In-Depth Information
h. The ZMP is readily implemented into the predictive dynamics formulation for
walking and provides effective balance criteria for walking.
i. Global forces, reaction forces, joint and torque profile can be calculated from
the simulation.
References
Anderson, F.C., Pandy, M.G., 2001. Dynamic optimization of human walking. J. Biomech.
Eng.—Trans. ASME 123 (5), 381 390.
Ayyappa, E., 1997. Normal human locomotion, part 1: basic concepts and terminology.
J. Prosthet. Orthot. 9 (1), 10 17.
Chevallereau, C., Aoustin, Y., 2001. Optimal reference trajectories for walking and running
of a biped robot. Robotica 19, 557 569.
Choi, M.G., Lee, J., Shin, S.Y., 2003. Planning biped locomotion using motion capture
data and probabilistic roadmaps. ACM Trans. Graph. 22 (2), 182 203.
Dasgupta, A., Nakamura, Y., 1999. Making feasible walking motion of humanoid robots
from human motion capture data. IEEE International Conference on Robotics and
Automation, Tokyo, Japan, pp. 1044 1049.
Fregly, B.J., Reinbolt, J.A., Rooney, K.L., Mitchell, K.H., Chmielewski, T.L., 2007.
Design of patient-specific gait modifications for knee osteoarthritis rehabilitation. IEEE
T. Bio.-Med. Eng. 54 (9), 1687 1695.
Gill, P.E., Murray, W., Saunders, M.A., 2002. SNOPT: an SQP algorithm for large-scale
constrained optimization. Siam. J. Optimiz. 12 (4), 979 1006.
Goswami, A., 1999. Postural stability of biped robots and the foot-rotation indicator (FRI)
point. Int. J. Robot. Res. 18 (6), 523 533.
Huang, Q., Yokoi, K., Kajita, S., Kaneko, K., Arai, H., Koyachi, N., et al., 2001. Planning
walking patterns for a biped robot. IEEE T. Robot. Autom. 17 (3), 280 289.
Kajita, S., Kanehiro, F., Kaneko, K., Fujiwara, K., Harada, K., Yokoi, K., et al., 2003.
Biped walking pattern generation by using preview control of zero-moment point.
IEEE International Conference on Robotics
and Automation Taipei, Taiwan,
pp. 1620 1626.
Kim, J., Abdel-Malek, K., Yang, J., Nebel, K., 2005. Optimization-based dynamic motion
simulation and energy consumption prediction for a digital human. J. Passenger Car:
Electron. Electronical Syst. 114 (7), 797 806.
Lo, J., Huang, G., Metaxas, D., 2002. Human motion planning based on recursive dynam-
ics and optimal control techniques. Multibody Syst. Dyn. 8 (4), 433 458.
Mu, X., Wu, Q., 2003. Synthesis of a complete sagittal gait cycle for a five-link biped
robot. Robotica 21, 581 587.
Park, J., Kim, K., 1998. Biped Robot Walking Using Gravity-Compensated Inverted
Pendulum Mode and Computed Torque Control. IEEE International Conference on
Robotics and Automation, pp. 3528 3533.
Pettre, J., Laumond, J.P., 2006. A motion capture-based control-space approach for walking
mannequins. Comput. Animation Virtual Worlds 17 (2), 109 126.
Ren, L., Jones, R.K., Howard, D., 2007. Predictive modelling of human walking over a
complete gait cycle. J. Biomech. 40 (7), 1567 1574.
Search WWH ::




Custom Search