Biomedical Engineering Reference
In-Depth Information
Osada, Y., and M. Hasebe. 1985. Electrically activated mechanochemical devices using poly-
electrolyte gels. Chem. Lett. 4:1285-1288.
Osada, Y., and R. Kishi. 1989. Reversible volume change of microparticles in an electric field.
J. Chem. Soc . 85:655-662.
Osada, Y., and A. Matsuda. 1995. Shape memory in hydregels. Nature 376:219.
Osada, Y., H. Okuzaki, J. P. Gong, and T. Nitta. 1994. Electro-driven gel motility on the base
of cooperative molecular assembly reaction. Polymer Sci. 36, 340-351.
Osada, Y., H. Okuzaki, and H. Hori. 1992. A polymer gel with electrically driven motility.
Nature 355:242-244.
Osada, Y., and S. B. Ross-Murphy. 1993. Intelligent gels. Sci. Am. , 268, 82-87.
Oster, G., and D. Auslander. 1971. Topological representations of thermodynamic systems—
II. Some elemental subunits for irreversible thermodynamics. J. Franklin Inst. , 292,
77-92.
Otake, M., M. Inaba, and H. Inoue. 1999. Development of gel robots made of electro-active
polymer PAMPS gel. In Proc. IEEE Int. Conf. Syst. Man, Cybern. WA20-2. CD-
ROM (1999).
———. 2000. Development of electric environment to control mollusk-shaped gel robots
made of electro-active polymer PAMPS Gel. Proceedings of the SPIE Electroactive
Polymer Actuators and Devices (EAPAD) 3987, 321-330.
———. 2002. Kinematics of gel robots made of electro-active polymer PAMPS gel. In
Proceedings of the IEEE international conference on robotics and automation , San
Francisco, 488-493.
Otake, M., Y. Kagami, M. Inaba, and H. Inoue. 2000a. Behavior of a mollusk-type robot
made of electro-active polymer gel under spatially varying electric fields. In Intelligent
autonomous systems , E. Pagello et al., Eds. IOS Press, 6, 686-691.
Otake, M., Y. Kagami, M. Inaba, H. Inoue. 2002a. Motion design of a starfish-shaped gel
robot made of electro-active polymer gel. Robotocs and Autonomous Syst. 40, pp.
185-191.
———. 2002b. Starfish-shaped gel robots made of EAP. WW-EAP Newsletter, 4(2):7-8.
Otero, T. F. 1997. Artificial muscles, electrodissolution and REDOX processes in conducting
polymers. In Handbook of organic conductive molecules and polymers , ed. H. S.
Nalwa. New York: John Wiley & Sons Ltd.
Otero, T. F., E. Angulo, J. Rodríguez, and C. Santamaría, C. 1992a. Spanish patent, E.P.
9200095, EP-9202628.
———. 1992b. Electrochemomechanical properties from a bilayer: Polypyrrole/non-conduct-
ing and flexible material artificial muscle. J. Electroanalytical Chem. 341:369-375.
Otero T. F., H. Grande, and J. Rodriguez. 1995. A new model for electrochemical oxidation
of polypyrrole under conformational relaxation control . J. Electrical Chem .
394:211-216.
———. 1996a. Reversible electrochemical reactions in conducting polymers: a molecular
approach to artificial muscles. J. Phys. Org. Chem. 9:381.
———. 1996b. Influence of the counterion size on the rate of electrochemical relaxation in
polypyrrole. Synth. Met. 9:285.
Otero, T. F., and J. Rodríguez. 1992. Electrochemomechanical and electrochemopositioning
devices: Artificial muscles. In Intrinsically conducting polymers: An emerging tech-
nology , ed. Aldisssi. The Netherlands: Kluwer Academic Publishers, 40.
Otero, T. F., J. Rodríguez, and C. Santamaría. 1994. Conductive polymers. Mater. Res. Soc.
Symp. Proc . 330:333.
Otero, T. F., J. Rodriguez, E. Angulo, and C. Santamaria. 1993. Artificial muscles from bilayer
structures. Synth. Met. 55-57:3713-3717.
Search WWH ::




Custom Search