Biomedical Engineering Reference
In-Depth Information
———. 2001b. The synthesis of nano-scale platinum particles—Their role in performance
improvement of artificial muscles and fuel cells. In Proceedings of SPIE 8th annual
international symposium on smart structures and materials . (March, Newport Beach,
CA), 4329-(26).
———. 2002a. Application of polyelectrolytes in ionic polymeric sensors, actuators, and
artificial muscles. Review chapter in Handbook of polyelectrolytes and their appli-
cations, ed. S. K. Tripathy, J. Kumar, and H. S. Nalwa. Vol. 3: Applications of
polyelectrolytes and theoretical models . Stevenson Ranch, CA: American Scientific
Publishers.
———. 2002b. Ionic polymer-metal nano-composites: Manufacturing techniques. In Pro-
ceeding of SPIE 8th annual international symposium on smart structures and mate-
rials . (March, San Diego, CA), 4695, paper no. 26.
———. 2002c. A novel method of manufacturing three-dimensional ionic polymer-metal
composites (IPMCs) biomimetic sensors, actuators and artificial muscle. Polymer
43(3):797-802.
———. 2002d. Electrical activation of contractile polyacrylonitrile (PAN)-conductor com-
posite fiber bundles as artificial muscles. In Proceedings of the first world congress
on biomimetics and artificial muscle (biomimetics 2002) . (December 9-11, Albu-
querque, NM).
———. 2003a. Ionic polymer-metal composites—II. Manufacturing techniques, smart mate-
rials and structures (SMS). Institute of Physics Publication, 12(1):65-79.
———. 2003b. Effective diffusivity of nanoscale ion-water clusters within ion-exchange
membranes determined by a novel mechano-electrical technique. Int. J. Hydrogen
Energy 28(1):99-104.
Kim, K. J., M. Shahinpoor, and R. Razani. 1998. Solid polymer fuel cells for the next century.
Int. J. Environ. Conscious Design Manuf. 7(3):17-46.
———. 1999. Electro-active polymer materials for solid polymer fuel cells. Electroactive
Polymers , SPIE publication no. 3669-42, 385-393.
———. 2000a. Preparation of IPMCs for use in fuel cells, electrolysis and hydrogen sensors.
SPIE Smart Materials and Structures, publication no. SPIE 3987-41, 311-320.
———. 2000b. Preparation of IPMCs for use in fuel cells, electrolysis, and hydrogen sensors.
In Proceedings of SPIE 7th international symposium on smart structures and mate-
rials . 3687:110-120.
Kishi, R., M. Hasebe, M. Hara, and Y. Osada. 1990. Mechanism and process of chemome-
chanical contraction of polyelectrolyte gels under electric field. Polymers Adv. Tech-
nol. 1:19-25.
Kishi R., H. Ichijo, and O. Hirasa. 1993. Thermo-responsive devices using poly(vinyl methyl
ether) hydrogels . J. Intelligent Mater. Syst. Struct . 4: 533-537.
Kolde, J. A., B. Bahar, M. S. Wilson, T. A. Zawodzinski, and S. Gottesfeld. 1995. In Proton
conducting membranes fuel cells, S. Gottesfeld, G. Halpert, and A. Landgrebe, Eds.
PV 95-23, p. 193, The Electrochemical Society Proceedings series, Pennington, NJ.
Kolosov, O., M. Suzuki, and K. Yamanaka. 1993. Microscale evaluation of the viscoelastic
properties of polymer gel for artificial muscles using transmission acoustic micros-
copy. J. Appl. Phys. 74(10):6407-6412.
Komoroski, R. A. and K. A. Mauritz. 1982. Nuclear magnetic resonance studies and the theory
of ion pairing in perfluorinated isonomers. In ACS Symposium Series, Vol. 180.
Washington, D.C.: The American Chemical Society.
Kottke, E. A., L. D. Partridge, and M. Shahinpoor. 2004. Bio-potential neural activation of
artificial muscles. In Proceedings of the second world congress on biomimetics and
artificial muscle (biomimetics and nano-bio 2004) . (December 5-8, Albuquerque, NM).
Search WWH ::




Custom Search